Skip to main content
Log in

Smart-Structures Technology for Parallel Robots

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Industrial robots play an important role in automation technology. A further increase of productivity is desired, especially in the field of handling and assembly, the domain of industrial robots. Parallel robots demonstrated their potential in applications with needs for high-dynamic trajectories in the recent years. Within the scope of the Collaborative Research Center (SFB 562)—‘Robotic Systems for Handling and Assembly’ the German Aerospace Center (DLR) and the Technical University of Braunschweig investigate smart-structures technology for parallel robots. In this paper the results of the main topics new active components, Finite-Element based elastic position dependent modeling and vibration control are summarized. The latest parallel robot called is equipped with new active rods. The design as well as the dimensioning of the rod with surface mounted piezo patch actuators is described. For trajectory based robot control, rigid body models are required. In parallel robots with vibration reduction a coupled approach is necessary in which elastic and rigid body equations are combined. The derivation of the equations for parallel robot is presented. Finally, the implemented vibration control is explained. In a position-dependent approach several robust controllers are switched to gain optimal control performance. A stability proof for the switching process is derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Algermissen, S., Keimer, R., Rose, M., Breitbach, E., Monner, H.P.: Applied robust control for vibration suppression in parallel robots. In: Proceedings of 22nd International Symposium on Automation and Robotics in Construction (ISARC), Ferrara, Italy (2005)

  2. Algermissen, S., Keimer, R., Rose, M., Monner, H.P.: Robust control for vibration suppression on parallel robot triglide. In: Proc. of Adaptronic Congress 2006, Göttingen, Mai (2006)

  3. Algermissen, S., Rose, M., Keimer, R., Breitbach, E.: High-speed parallel robots with integrated vibration-suppression for handling and assembly. In: 11th Annual International Symposium on Smart Structures and Materials. SPIE, San Diego, Kalifornien, USA, März (2004)

    Google Scholar 

  4. Apkarian, P., Gahinet, P., Becker, G.: Self-scheduled \({\mathcal{H}_\infty}\) control of linear parameter-varying systems: a design example. Automatica 31(9), 1251–1261 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bachman, S.: Modellierung und bau eines aktiven stabes mit verteilter aktuatorik zur schwingungsunterdrückung bei parallelrobotern. IB 131-205-45, DLR, Braunschweig (2005)

  6. Breitbach, E., Algermissen, S., Keimer, R., Rose, M., Stachera, C.: Adaptive tools in parallel robotics. In: Last, P., Budde, C., Wahl, F.M. (eds.) Robotic Systems for Handling and Assembly, 2nd International Colloquium of the Collaborative Research Center 562. Fortschritte in der Robotik, vol. 9, pp. 203–219. Shaker Verlag, Braunschweig, Germany, 10–11 May 2005

  7. Breitbach, E., Keimer, R., Rose, M., Sachau, D.: An adaptronic solution to increase efficiency of high speed parallel robots. In: Proceedings of 12th International Conference on Adaptive Structures and Technologies (ICAST). College Park, Maryland, USA (2001)

    Google Scholar 

  8. Budde, C., Last, P., Hesselbach, J.: Workspace enlargement of a triglide robot by changing working and assembly mode. In: Proc. of the IASTED International Conference ROBOTICS AND APPLICATION, pp. 244–248. Cambridge, USA (2005)

  9. Dietz, S.: Vibration and fatique analysis of vehicle systems using component modes. Fortschritt-Berichte VDI, Reihe 12: Verkehrstechnik/Fahrzeugtechnik, 401 (1999)

  10. Favoreel, W., Sima, V., Huffel, S.V., Verhaegen, M., Moor, B.D.: Slicot working note 1998-6: Subspace model identification of linear systems in slicot. Technical report, European Community BRITE-EURAM III Thematic Networks Programme NICONET (1998)

  11. Gahinet, P., Nemirovski, A., Laub, A.J., Chilali, M.: LMI Control Toolbox User’s Guide. The MathWorks, Inc. (1995)

  12. GmbH, I.: Simpack the High-end Simulation Software. Homepage (2008)

  13. Götting, H.C., Schütze, R.: Adaptive lightweight cfrp strut for active vibration damping in truss structures. J. Intell. Mater. Syst. Struct. 7(4), 433–440 (1996). doi:10.1177/1045389X9600700408

    Article  Google Scholar 

  14. Hesselbach, J., Budde, C., Maaß, J., Breitbach, E., Rose, M.: Dynamic performance enhancement of a hexa-parallel-robot using the computed torque approach. In: Proceedings of Mechatronics & Robotics, pp. 1006–1011 (2004)

  15. Krten, R.: Getting Started with QNX Neutrino 2: A Guide for Realtime Programmers. PARSE Software Devices (2001)

  16. Nethery, J., Spong, M.: Robotica: a mathematica package for robot analysis. IEEE Robot. Autom. Mag. 1(1), 13–20 (1994). doi:10.1109/100.296449

    Article  Google Scholar 

  17. Raisch, J.: Mehrgrößenregelung im Frequenzbereich. R. Oldenbourg Verlag GmbH, München (1994)

  18. Rugh, W.J., Shamma, J.S.: Research on gain scheduling. Automatica 36(10), 1401–1425 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Schwertassek, R.: Dynamik Flexibler Mehrkörpersysteme. Vieweg Verlag, Braunschweig (1999)

    Google Scholar 

  20. Steiner, J., Kohn, N.: Universal communication architecture for high-dynamic robot systems using qnx. In: Proc. of ICARCV, Kunming, China (2004)

  21. Wang, X.: Dynamic modeling, experimental identification, and active vibration control design of a smart parallel manipulator. Ph.D. thesis, Department of Mechanical and Industrial Engineering, University of Toronto, Toronto (2005)

  22. Wang, X., Mills, J.: A fem model for active vibration control of flexible linkages. In: Proc. of IEEE International Conference on Robotics and Automation (ICRA), vol. 5, pp. 4308–4313 (2004)

  23. Wang, X., Mills, J.K.: Active control of configuration-dependent linkage vibration with application to a planar parallel platform. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 4327–4332 (2005)

  24. Wang, X., Mills, J.K.: Dual-modal control of configuration-dependent linkage vibration in a smart parallel manipulator. In: IEEE International Conference on Robotics and Automation (ICRA), Orlando, pp. 3544–3549 (2006)

  25. Zhang, X., Mills, J., Cleghorn, W.: Dynamic modeling and experimental validation of a 3-prr parallel manipulator with flexible intermediate links. J. Intell. Robot. Syst. 50(4), 323–340 (2007)

    Article  MATH  Google Scholar 

  26. Zhou, K.: Essentials of Robust Control. Prentice Hall (1998)

  27. Zhou, K., Doyle, J., Glover, K.: Robust and Optimal Control. Prentice Hall (1996)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Algermissen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Algermissen, S., Keimer, R., Rose, M. et al. Smart-Structures Technology for Parallel Robots. J Intell Robot Syst 63, 547–574 (2011). https://doi.org/10.1007/s10846-010-9522-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-010-9522-8

Keywords

Navigation