Abstract
The motion planning is a difficult problem but nevertheless, a crucial part of robotics. The probabilistic roadmap planners have shown to be an efficient way to solve these planning problems. In this paper, we present a new algorithm that is based on the principles of the probabilistic roadmap planners. Our algorithm enhances the sampling by intelligently detecting which areas of the configuration space are easy and which parts are not. The algorithm then biases the sampling only to the difficult areas that may contain narrow passages. Our algorithm works by dividing the configuration space into regions at the beginning and then sampling configurations inside each region. Based on the connectivity of the roadmap inside each region, our algorithm aims to detect whether the region is easy or difficult. We tested our algorithm with three different simulated environments and compared it with two other planners. Our experiments showed that with our method it is possible to achieve significantly better results than with other tested planners. Our algorithm was also able to reduce the size of roadmaps.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Amato, N.M., Bayazit, O.B., Dale, L.K., Jones, C., Vallejo, D.: OBPRM: an obstacle-based PRM for 3D workspaces. In: Proc. Int. Wkshp. on Alg. Found. of Rob. (WAFR), pp. 155–168 (1998)
van den Berg, J.P., Overmars, M.H.: Roadmap-based motion planning in dynamic environments. IEEE Trans. Robot. 21(5), 885–897 (2005)
Boor, V., Overmars, M.H., van der Stappen, A.F.: The Gaussian sampling strategy for probabilistic roadmap planners. In: Proc. IEEE Int. Conf. Rob. Autom., pp. 1018–1023 (1999)
Branicky, M., Lavalle, S., Olson, K., Yang, L.: Quasi-randomized path planning. In: Proc. IEEE Int. Conf. Rob. Autom., pp. 1481–1487 (2001)
Canny, J.F.: The Complexity of Robot Motion Planning. MIT Press, Cambridge, MA (1988)
Cortés, J., Siméon, T., Ruiz De Angulo, V., Guieysse, D., Remaud-Siméon, M., Tran, V.: A path planning approach for computing large-amplitude motions of flexible molecules. Bioinf. 21(1), 116–125 (2005)
Esteves, C., Arechavaleta, G., Pettré, J., Laumond, J.-P.: Animation planning for virtual characters cooperation. ACM Trans. Graph. 25(2), 319–339 (2006)
Geraerts, R., Overmars, M.H.: Sampling and node adding in probabilistic roadmap planners. Robot. Auton. Syst. 54, 165–173 (2006)
Geraerts, R., Overmars, M.H.: The corridor map method: a general framework for real-time high-quality path planning. Comput. Anim. Virtual Worlds 18, 107–119 (2007)
Geraerts, R., Overmars, M.H.: Reachability-based analysis for probabilistic roadmap planners. Robot. Auton. Syst. 55(11), 824–836 (2007)
Holleman, C., Kavraki, L.E.: A framework for using the workspace medial axis in PRM planners. In: Proc. IEEE Int. Conf. Rob. Autom., pp. 1408–1413 (2000)
Hsu, D., Jiang, T., Reif, J., Sun, Z.: The bridge test for sampling narrow passages with probabilistic roadmap planners. In: Proc. IEEE Int. Conf. Rob. Autom. (2003)
Hsu, D., Latombe, J.-C., Kurniawati, H.: On the probabilistic foundations of probabilistic roadmap planning. Int. J. Rob. Res. 25(7), 627–643 (2006)
Hsu, D., Latombe, J.-C., Motwani, R.: Path planning in expansive configuration spaces. Int. J. Comput. Geom. Appl. 9(4 & 5), 495–512 (1999)
Hsu, D., Sánchez-Ante, G., Sun, Z.: Hybrid PRM sampling with a cost-sensitive adaptive strategy. In: Proc. IEEE Int. Conf. Rob. Autom., pp. 3885–3891 (2005)
Jiménez, P., Thomas, F., Torras, C.: Collision detection algorithms for motion planning. In: Laumond, J.-P. (ed.) Robot Motion Planning and Control, pp. 1–53. Springer, Berlin (1998)
Kavraki, L.E., Svestka, P., Latombe, J.-C., Overmars, M.H.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Rob. Autom. 12(4), 566–580 (1996)
Larsen, E., Gottschalk, S., Lin, M.C., Manocha, D.: Fast proximity queries with swept sphere volumes. In: Proc. IEEE Int. Conf. Rob. Autom., pp. 3719–3726 (2000)
Latombe, J.-C.: Robot Motion Planning. Kluwer Academic Publishers, Boston, MA (1991)
Lien, J.-M., Thomas, S.L., Amato, N.M.: A general framework for sampling on the medial axis of the free space. In: Proc. IEEE Int. Conf. Rob. Autom. (2003)
Reif, J.H.: Complexity of the mover’s problem and generalizations. In: Proc. IEEE Symp. Found. Comput. Sci., pp. 421–427 (1979)
Rodríguez, S., Thomas, S., Pearce, R., Amato, N.M.: Resampl: a region-sensitive adaptive motion planner. In: Proc. Int. Wkshp. on Alg. Found. of Rob. (WAFR), pp. 285–300 (2006)
Saha, M., Latombe, J.-C., Chang, Y.-C., Prinz, F.: Finding narrow passages with probabilistic roadmaps: the small-step retraction method. Auton. Robots 19(3), 301–319 (2005)
Tapia, L., Thomas, S., Amato, N.M.: A motion planning approach to studying molecular motions. Commun. Inf. Syst. 10(1), 53–68 (2010)
Tapia, L., Thomas, S., Boyd, B., Amato, N.M.: An unsupervised adaptive strategy for constructing probabilistic roadmaps. In: Proc. IEEE Int. Conf. Rob. Autom., pp. 2300–2307 (2009)
Thomas, S., Morales, M., Tang, X., Amato, N.M.: Biasing samplers to improve motion planning performance. In: Proc. IEEE Int. Conf. Rob. Autom., pp. 1625–1630 (2007)
Wilmarth, S.A., Amato, N.M., Stiller, P.F.: MAPRM: a probabilistic roadmap planner with sampling on the medial axis of the free space. In: Proc. IEEE Int. Conf. Rob. Autom., pp. 1024–1031 (1999)
Zhang, L., Kim, Y.J., Manocha, D.: A hybrid approach for complete motion planning. In: Proc. IEEE/RSJ Int. Conf. Intell. Rob. Syst. (IROS), pp. 7–14 (2007)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Rantanen, M.T. A Connectivity-Based Method for Enhancing Sampling in Probabilistic Roadmap Planners. J Intell Robot Syst 64, 161–178 (2011). https://doi.org/10.1007/s10846-010-9534-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10846-010-9534-4