Skip to main content
Log in

Image Based and Hybrid Visual Servo Control of an Unmanned Aerial Vehicle

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

The use of unmanned aerial vehicles (UAVs) for military, scientific, and civilian sectors are increasing drastically in recent years. This study presents algorithms for the visual-servo control of an UAV, in which a quadrotor helicopter has been stabilized with visual information through the control loop. Unlike previous study that use pose estimation approach which is time consuming and subject to various errors, the visual-servo control is more reliable and fast. The method requires a camera on-board the vehicle, which is already available on various UAV systems. The UAV with a camera behaves like an eye-in-hand visual servoing system. In this study the controller was designed by using two different approaches; image based visual servo control method and hybrid visual servo control method. Various simulations are developed on Matlab, in which the quadrotor aerial vehicle has been visual-servo controlled. In order to show the effectiveness of the algorithms, experiments were performed on a model quadrotor UAV, which suggest successful performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chaumette, F., Hutchinson, S.: Visual servo control part I: basic approaches. IEEE Robot. Autom. Mag. 13(4), 82–90 (2006)

    Article  Google Scholar 

  2. Chaumette, F.: Potential problems of stability and convergence in image-based and position-based visual servoing. In: Kriegman, D., Hager, G., Morse, A.S. (eds.) The Conference of Vision and Control. Lecture Notes In Control and Information Sciences, vol. 237, pp. 66–78. Springer, New York (1998)

  3. Deng, D., Wilson, W., Janabi-Sharifi, F.: Dynamic performance of the position-based visual servoing method in the cartesian and image spaces. In: Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., vol. 1, pp. 510–515. Las Vegas, Nevada (2003)

  4. Martinet, P., Gallice, J., Khadraoui, D.: Vision based control law using 3d visual features. In: Proc. World Autom. Congr., Robot. Manuf. Syst., vol. 3, pp. 497–502. Montpellier, France (1996)

  5. Espiau, B.: Effect of camera calibration errors on visual servoing in robotics. Presented at the 3rd Int. Symp. Exp. Robot., Kyoto, Japan (1993)

  6. Malis, E., Chaumette, F., Boudet, S.: 2 1/2 d visual servoing. IEEE Trans. Robot. Autom. 15(2), 238–250 (1999)

    Article  Google Scholar 

  7. Hamel, T., Mahony, R.: Visual servoing of an under actuated dynamic rigid-body system: an image-based approach. IEEE Trans. Robot. Autom. 18(2), 187–198 (2002)

    Article  Google Scholar 

  8. Romero, H., Benosman, R., Lozano, R.: Stabilizational Location of a Four Rotor Helicopter Applying Vision, pp. 3930–3936. ACC, Minneapolis (2006)

    Google Scholar 

  9. Saripalli, S., Montgomery, J.F., Sukhatme, G.S.: Visually-guided landing of an UAV. IEEE Trans. Robot. Autom. 19(3), 371–381 (2003)

    Article  Google Scholar 

  10. Azinheira, J.R., Rives, P., Carvalho, J.R.H., Silveira, G.F., de Paiva, E.D., Bueno, S.S.: Visual servo control for the hovering of an outdoor robotic airship. ICRA 3, 2787–2792 (2002)

    Google Scholar 

  11. Wu, A.D., Johnson, E.N., Proctor, A.A.: Vision-aided inertial navigation for flight control. In: AIAA Guidance, Navigation and Control Conf. and Exhibit, San Francisco, USA (2005)

  12. Bourquardez, O., Chaumette, F.: Visual Servoing of an Airplane for Auto-landing. IROS, San Diego (2007)

    Google Scholar 

  13. Altuǧ, E., Ostrowski, J.P., Mahony, R.: Control of a quadrotor helicopter using visual feedback. In: Proceedings of the 2002 IEEE International Conference on Robotics & Automation. Washington, DC (2002)

    Google Scholar 

  14. Proctor, A.A., Johnson, E.N., Apker, T.B.: Vision-only control and guidance for aircraft. J. Field Robot. 23(10), 863–890 (2006)

    Article  MATH  Google Scholar 

  15. Sukhatme, G.S., Mejias, L., Saripalli, S., Campoy, P.: Visual servoing of an autonomous helicopter in urban areas using feature tracking. J. Field Robot. 23(3/4), 185–199 (2006)

    Google Scholar 

  16. Altuǧ, E., Ostrowski, J.P., Taylor, J.: Control of a quadrotor helicopter using dual camera visual feedback. Int. J. Robot. Res. 24(5), 329–341 (2005)

    Article  Google Scholar 

  17. Lazar, C., Burlacu, A.: Dynamic simulation model for image based visual servo control systems. In: IEEE International Conference on Robotics & Automation (2007)

  18. Ceren, Z., Altuǧ, E.: Vision-based servo control of a quadrotor air vehicle. In: IEEE International Symposium on Computational Intelligence in Robotics and Automation (CIRA2009), DCC, Daejeon, Korea (2009)

  19. Cowan, N., Chang, D.: Geometric visual servoing. IEEE T. Robot. 21(6), 1128–1138 (2005)

    Article  Google Scholar 

  20. Tayebi, A., McGilvray, S.: Attitude stabilization of a VTOL quadrotor aircraft. IEEE Trans. Control Syst. Technol. 14(3), 562–571 (2006)

    Article  Google Scholar 

  21. Erginer, B.: Quadrotor VTOL Arac\(\imath \)n\(\imath \)n Modellenmesi ve Kontrolü. Istanbul Technical University, Master of Science Thesis (in Turkish), Istanbul, Turkey (2007)

  22. Bouabdallah, S., Murrieri, P., Siegwart, R.: Design and control of an indoor micro quadrotor. In: Proc. of Int. C. on Robotics and Automation, pp. 4393–4398. New Orleans, LA, USA. (2004)

  23. Michel, H., Rives, P.: Singularities in the determination of the situation of a robot effector from the perspective view of three points. INRIA Research Report, Tech. Rep. 1850 (1993)

  24. Fischler, M., Bolles, R.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24, 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  25. Hutchinson, S., Hager, G., Corke, P.: A tutorial on visual servo control. IEEE Trans. Robot. Autom. 12, 651–670 (1996)

    Article  Google Scholar 

  26. Espiau, B., Chaumette, F., Rives, P.: A new approach to visual servoing in robotics. IEEE Trans. Robot. Autom. 8(3), 313–326 (1992)

    Article  Google Scholar 

  27. Malis, E.: Improving vision-based control using efficient second-order minimization techniques. In: Proc. IEEE Int. Conf. Robot. Automat., pp. 1843–1848 (2004)

  28. Geyer, C., Daniilidis, K.: A unifying theory for central panoramic systems and practical implications. In: European Conference on Computer Vision, vol. 29, pp. 159–179. Dublin, Ireland (2000)

  29. Fomena, R.T., Chaumette, F.: Improvements on visual servoing from spherical targets using a spherical projection model. IEEE Trans. Robot. 25(4), 874–886 (2009)

    Google Scholar 

  30. Hadj-Abdelkader, H., Mezouar, Y., Martinet, P.: Decoupled visual servoing based on the spherical projection of a set of points. In: IEEE International Conference on Robotics and Automation, Kobe International Conference Center pp. 1110–1115. Kobe, Japan (2009)

  31. Fomena, R.T., Chaumette, F.: Visual servoing from spheres using a spherical projection model. In: Proc. IEEE ICRA, pp. 2080–2085, Rome, Italy (2007)

  32. Cervera, E.: Visual Servoing Toolbox. Jaume I University, Castello (2003)

  33. Matrox Imaging Library. http://www.matrox.com. Accessed 23 July 2010

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erdinç Altuğ.

Additional information

This work was supported in part by the Scientific and Technological Research Council of Turkey (TÜBİTAK) under Grant 107E211.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ceren, Z., Altuğ, E. Image Based and Hybrid Visual Servo Control of an Unmanned Aerial Vehicle. J Intell Robot Syst 65, 325–344 (2012). https://doi.org/10.1007/s10846-011-9582-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-011-9582-4

Keywords

Navigation