Skip to main content
Log in

On the Recursive Adaptive Control for Free-floating Space Manipulators

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper is devoted to investigating the recursive implementation schemes of adaptive control for free-floating space manipulators. Using spatial vector tool and some physical properties that free-floating space manipulators enjoy, we establish a general framework on the seeking of the centripetal and Coriolis matrix that satisfies the skew symmetry requirement. Under this general framework, we propose a recursive adaptive algorithm for free-floating manipulators, which is composed of two parts: the first part is the recursive derivation of the required manipulator control torques, and the second part is the recursive updating of the spacecraft reference velocity and acceleration. To guarantee the uniform positive definiteness of the estimated spacecraft inertia, we present a parameter projection algorithm to project the estimated parameters into some pre-specified parameter region. In the next, we extend the proposed recursive adaptive algorithm to task-space control of free-floating space manipulators. We examine the performance of the proposed recursive adaptive algorithms via numerical simulation on a six-DOF space manipulator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Oda, M., Kibe, K., Yamagata, F.: ETS-VII, space robot in-orbit experiment satellite. In: Proceedings of the 1996 IEEE International Conference on Robotics and Automation, pp. 739–744. Minneapolis, Minnesota (1996)

  2. Yoshida, K.: Engineering test satellite VII flight experiment for space robot dynamics and control: theories on laboratory test beds ten years ago, now in orbit. Int. J. Rob. Res. 22(5), 321–335 (2003)

    Article  Google Scholar 

  3. Shoemaker, J., Wright, M.: Orbital express space operations architecture program. In: Proc. of SPIE, vol. 5419. Bellingham, WA (2004)

  4. Sommer, B.: On-orbit servicing of satellites (OOS) as a major application field-The TECSAS mission. In: 54th International Astronautical Congress of the International Astronautical Federation, the International Academy of Astronautics, and the International Institute of Space Law, Bremen, Germany, IAC-03-U.1.06 (2003)

  5. Huang, P., Xu, Y., Liang, B.: Tracking trajectory planning of space manipulator for capturing operation. Int. J. Adv. Robot. Syst. 3(3), 211–218 (2006)

    Google Scholar 

  6. Xu, W., et al.: The Cartesian path planning of free-floating space robot using particle swarm optimization. Int. J. Adv. Robot. Syst. 5(3), 301–310 (2008)

    Google Scholar 

  7. Xu, W., et al.: Autonomous target capturing of free-floating space robot: theory and experiments. Robotica 27(3), 425–445 (2009)

    Article  Google Scholar 

  8. Tortopidis, I., Papadopoulos, E.: On point-to-point motion planning for underactuated space manipulator systems. Robot. Auton. Syst. 55, 122–131 (2007)

    Article  Google Scholar 

  9. Piersigilli, P., Sharf, I., Misra, A.K.: Reactionless capture of a satellite by a two degree-of-freedom manipulator. Acta Astronaut. 66, 183–192 (2010)

    Article  Google Scholar 

  10. Papadopoulos, E.: On the dynamics and control of space manipulators. Ph.D. thesis, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts (1990)

  11. Wang, H., Xie, Y.: Passivity based adaptive Jacobian tracking for free-floating space manipulators without using spacecraft acceleration. Automatica 45(6), 1510–1517 (2009)

    Article  MATH  Google Scholar 

  12. Hirzinger, G., et al.: DLR’s robotics technologies for on-orbit servicing. Adv. Robot. 18, 139–174 (2004)

    Article  Google Scholar 

  13. Papadopoulos, E., Dubowsky, S.: On the nature of control algorithms for free-floating space manipulators. IEEE Trans. Robot. Autom. 7(6), 750–758 (1991)

    Article  Google Scholar 

  14. Papadopoulos, E., Dubowsky, S.: Dynamic singularities in the control of freefloating space manipulators. ASME J. Dyn. Syst. Meas. Control 115(1), 44–52 (1993)

    Article  Google Scholar 

  15. Liang, B., Xu, Y., Bergerman, M.: Mapping a space manipulator to a dynamically equivalent manipulator. J. Dyn. Syst. Meas. Control 120, 1–7 (1998)

    Article  Google Scholar 

  16. Pathak, P.M., Mukherjee, A., Dasgupta, A.: Impedance control of space robots using passive degrees of freedom in controller domain. J. Dyn. Syst. Meas. Control 127, 564–578 (2005)

    Article  Google Scholar 

  17. Gu, Y.L., Xu, Y.: A normal form augmentation approach to adaptive control of space robot systems. In: Proceedings of IEEE Conf. on Robotics and Automation, pp. 731–737. Atlanta, GA (1993)

  18. Sanner, R.M., Vance, E.E.: Adaptive control of free-floating space robots using “Neural” networks. In: Proceedings of the American Control Conference, pp. 2790–2694. Seattle, Washington (1995)

  19. Taveira, T.F.P.A., Siqueira, A.A.G., Terra, M.H.: Adaptive nonlinear H ∞  controllers applied to a free-floating space manipulator. In: Proceedings of the IEEE International Conference on Control Applications, pp. 1476–1481. Munich, Germany (2006)

  20. Ehrenwald, L., Guelman, M.: Integrated adaptive control of space manipulators. J. Guid. Control Dyn. 21(1), 156–163 (1998)

    Article  MATH  Google Scholar 

  21. Walker, M.W., Wee, L.-B.: Adaptive control of space-based robot manipulators. IEEE Trans. Robot. Autom. 7(6), 828–835 (1991)

    Article  Google Scholar 

  22. Walker, M.W.: Adaptive control of manipulators containing closed kinematic loops. IEEE Trans. Robot. Autom. 6(1), 10–19 (1990)

    Article  Google Scholar 

  23. Niemeyer, G., Slotine, J.J.E.: Performance in adaptive manipulator control. Int. J. Rob. Res. 10(2), 149–161 (1991)

    Article  Google Scholar 

  24. Huo, W., Gao, W., Cheng, M.: A new manipulator model and control algorithm (in Chinese). Acta Automatica Sinica 20, 278–285 (1994)

    Google Scholar 

  25. Wang, H.: On the recursive implementaion of adaptive control for robot manipulators. In: Chinese Control Conference, pp. 2154–2161. Beijing, China (2010)

  26. Featherstone, R.: Rigid Body Dynamics Algorithm. Springer, New York, USA (2008)

    Book  Google Scholar 

  27. Wang, H., Xie, Y.: Adaptive control scheme for the capture of a tumbling target spacecraft using free-floating space manipulators (in Chinese). Aerospace Control and Applications 35(5), 6–12 (2009)

    Google Scholar 

  28. Fu, K.S., Gonzalez, R.C., Lee, C.S.G.: Robotics: Control, Sensing, Vision and Intelligence. McGraw-Hill, New York (1987)

    Google Scholar 

  29. Xu, Y., Shum, H.-Y., Lee, J.-J., Kanade, T.: Adaptive control of space robot system with an attitude controlled base. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 2005–2010. Nice, France (1992)

  30. Xu, Y., Shum, H.-Y., Lee, J.-J., Kanade, T.: Parameterization and adaptive control of space robot systems. IEEE Trans. Aerosp. Electron. Syst. 30(2), 435–451 (1994)

    Article  Google Scholar 

  31. Slotine, J.J.E., Li, W.: Composite adaptive control of robot manipulators. Automatica 25(4), 509–519 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  32. Li, W., Slotine, J.J.E.: An indirect adaptive robot controller. Syst. Control. Lett. 12, 259–266 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ioannou, P.A., Sun, J.: Robust Adaptive Control. Prentice Hall, Upper Saddle River, NJ (1997)

    Google Scholar 

  34. Crouch, P.E.: Spacecraft attitude control and stabilization: application of geometric control theory to rigid body models. IEEE Trans. Automat. Contr. 29(4), 321–331 (1984)

    Article  MATH  Google Scholar 

  35. Egeland, O., Godhavn, J.-M.: Passivity based adaptive attitude control of a rigid spacecraft. IEEE Trans. Automat. Contr. 39(4), 842–846 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  36. Tsiotras, P.: Further passivity results for the attitude control problem. IEEE Trans. Automat. Contr. 43(11), 1597–1600 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  37. Abiko, S., Hirzinger, G.: An adaptive control for a free-floating space robot by using inverted chain approach. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2236–2241. California, USA (2007)

  38. Abiko, S., Hirzinger, G.: Adaptive control for a torque controlled free-floating space robot with kinematic and dynamic model uncertainty. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2359–2364. St. Louis, USA (2009)

  39. Oki, T., Nakanishi, H., Yoshida, K.: Whole-body motion control for capturing a tumbling target by a free-floating space robot. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2256–2261. California, USA (2007)

  40. Oki, T., Nakanishi, H., Yoshida, K.: Time-optimal manipulator control of a free-floating space robot with constraint on reaction torque. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2828–2833. Nice, France (2008)

  41. Wang, H., Xie, Y.: On the uniform positive definiteness of the estimated inertia for robot manipulators. In: 18th IFAC World Congress, pp. 4089–4094. Milano, Italy (2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanlei Wang.

Additional information

This research is supported by the National Natural Science Foundation of China under grants 61004058 and 60804016.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Xie, Y. On the Recursive Adaptive Control for Free-floating Space Manipulators. J Intell Robot Syst 66, 443–461 (2012). https://doi.org/10.1007/s10846-011-9632-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-011-9632-y

Keywords

Navigation