Skip to main content
Log in

A Differential Game Theoretic Approach for Two-Agent Collision Avoidance with Travel Limitations

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This work presents a collision avoidance control strategy that solves the Hamilton-Jacobi-Isaacs (HJI) equation for an agent to quickly take action assuming a worst-case scenario. By doing so, the agent can develop a control strategy that is robust to the strategies of other agents with whom collision is possible. Consequently, if the governing dynamics of the agent are sufficient, then a collision can be avoided. We build on the idea of finding control solutions by using a differential game theoretic approach (Mettenheim and Breitner, 2009). This is beneficial because the opposing agent’s strategy is incorporated into the control by assuming it plays the worst-case actions. The approach in this work solves the zero-sum aspects of the control on-line using a fast solution method that operates over partitions in the state space (Goode et al., ASME J Dyn Syst Meas Control, 2011). We form the solution to the Homicidal Chauffeur game which is used to provide the control for an evader attempting to avoid a pursuer, an agent that deviates from its normal path and into that of the evader. Furthermore, the evader is constrained to remain within defined boundaries of its assigned travel area, such as a road lane, water channel, etc. The control strategy consists of three parts: (1) a zero-sum approximation of collision avoidance, (2) high-level path planning, and (3) low-level vehicle control. Each component is explained, and an example is given using a real robotic vehicle control system. Here, we show how the control can be implemented using a simple processor located on a vehicle that seeks to avoid a collision with another oncoming vehicle, making a left turn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balluchi, A., Bicchi, A., Balestrino, A., Casalino, G.: Path tracking control for dubin’s cars. In: IEEE International Conference on Robotics and Automation (1996)

  2. Balluchi, A., Bicchi, A., Souéres, P.: Path-following with a bounded-curvature vehicle: a hybrid control approach. Int. J. Control 78(15), 1228–1247 (2005)

    Article  MATH  Google Scholar 

  3. Behringer, R.: Road recognition from multifocal vision. In: Intelligent Vehicles ’94 Symposium, Proceedings of the, pp. 302–307 (1994)

  4. Bertsekas, D.P.: Dynamic Programming and Optimal Control, vol. 1, 3rd edn. Athena Scientific (2007)

  5. Bopardikar, S., Bullo, F., Hespanha, J.: On discrete-time pursuit-evasion games with sensing limitations. IEEE Trans. Robot. 24(6), 1429–1439 (2008). doi:10.1109/TRO.2008.2006721

    Article  Google Scholar 

  6. Brakatsoulas, S., Pfoser, D., Salas, R., Wenk, C.: On map-matching vehicle tracking data. In: Proc. 31st VLDB Conference (2005)

  7. Chang, D., Shadden, S., Marsden, J., Olfati-Saber, R.: Collision avoidance for multiple agent systems. In: Proceedings, 42nd IEEE Conference on Decision and Control, vol. 1, pp. 539–543 (2003)

  8. Cristiani, E., Falcone, M.: A fast marching method for pursuit-evasion games. Commun. SIMAI Congr. 1, 1–6 (2006)

    Google Scholar 

  9. Falcone, M.: Numerical methods for differential games based on partial differential equations. Int. Game Theor. Rev. 8(2), 231–272 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Farish, M.: Driving blind. Engineering & Technology (2010)

  11. Franks, U., Loose, H., Knoppel, C.: Lane recognition on country roads. In: Intelligent Vehicles Symposium, 2007 IEEE, pp. 99–104 (2007)

  12. Fudenberg, D., Levine, D.K.: The Theory of Learning in Games, MIT Press Books, vol. 1. MIT Press (1998)

  13. Gern, A., Franke, U., Levi, P.: Advanced lane recognition-fusing vision and radar. In: Intelligent Vehicles Symposium, 2000. IV 2000. Proceedings of the IEEE, pp. 45 –51 (2000)

  14. Getz, W.M., Pachter, M.: Two-target pursuit-evasion differential games in the plane. J. Optim. Theory Appl. 34, 383–403 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  15. Goode, B.J., Kurdila, A.J., Roan, M.J.: A partitioning scheme for a switched feedback control law in two agent pursuit-evasion scenarios. J. Dyn. Syst. Meas. Control 134, 011025 (2012). doi:10.1115/1.4004767

    Article  Google Scholar 

  16. Goode, B., Kurdila, A., Roan, M.: Performance of a switching controller for pursuit-evasion scenarios with noisy measurments. In: Proc. IASTED Conference on Control and Applications, pp. 217–224 (2011)

  17. Isaacs, R.: Differential Games. John Wiley and Sons, Inc., New York, NY (1965)

    MATH  Google Scholar 

  18. Kamijo, S., Matsushita, Y., Ikeuchi, K., Sakauchi, M.: Traffic monitoring and accident detection at intersections. IEEE Trans. Intell. Transp. Syst. 1(2), 108–118 (2000)

    Article  Google Scholar 

  19. Karpiński, M., Senart, A., Cahill, V.: Sensor networks for smart roads. In: Proc. Fourth Annual IEEE International Conference on Pervasive Computing and Communications Workshops (2008)

  20. Krasovskiǐ, N.N., Subbotin, A.I., Kotz, S.: Game-theoretical control problems. Springer-Verlag New York, Inc., New York, NY, USA (1987)

    Google Scholar 

  21. Lee, P.S., Wang, L.L.: Collision avoidance by fuzzy logic control for automated guided vehicle navigation. J. Robot. Syst. 11(8), 743–760 (1994)

    Article  MATH  Google Scholar 

  22. Mayne, D.Q., Rawlings, J.B., Rao, C.V., Scokaert, P.O.: Constrained model predictive control: stability and optimality. Automatica 36(6), 789–814 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. McEneaney, W.: A curse-of-dimensionality-free numerical method for solution of certain HJB PDEs. SIAM J. control optim. 46(4) (2008)

  24. Merz, A.: The game of two identical cars. J. Optim. Theory Appl. 9(5), 324–343 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  25. Merz, A.W.: The homicidal chauffeur—a differential game. Ph.D. thesis, Stanford University (1971)

  26. Mettenheim, H.J., Breitner, M.H.: Numerical solution of the game of two cars with a neurosimulator and grid computing. In: Pourtallier O., Gaitsgory V., Bernhard P. (eds.) Advances in Dynamic Games and Their Applications, Annals of the International Society of Dynamic Games, vol. 10, pp. 1–24. Birkhuser Boston (2009)

  27. Moon, T., Stirling, W.: Mathematical Methods and Algorithms for Signal Processing. Prentice Hall, Upper Saddle River, NJ (2000)

    Google Scholar 

  28. Ogawa, T., Takagi, K.: Lane recognition using on-vehicle lidar. In: IEEE Intelligent Vehicles Symposium, pp. 540 –545 (2006)

  29. Pachter, M., Yavin, Y.: A stochastic homicidal chauffeur pursuit-evasion differential game. J. Optim. Theory Appl. 34, 405–424 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  30. Patsko, V., Turova, V.L.: Numerical study of the homicidal chauffeur game. In: Bainov, D. (ed.) Proceedings of the Ninth International Colloquium on Differential Equations (1999)

  31. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton, NJ (1970)

    MATH  Google Scholar 

  32. Shladover, S.E., Desoer, C.A., Hedrick, J.K., Tomizuka, M., Walrand, J., Zhang, W.B., McMahon, D.H., Peng, H., Sheikholeslam, S., McKeown, N.: Automatic vehicle control developments in the path program. IEEE Trans. Veh. Technol. 40(1), 114–130 (1991)

    Article  Google Scholar 

  33. Smith, A., Balakrishnan, H., Goraczko, M., Priyantha, N.B.: Tracking Moving Devices with the Cricket Location System. In: 2nd International Conference on Mobile Systems, Applications and Services (Mobisys 2004). Boston, MA (2004)

  34. Swaroop, D., Hedrick, J.K., Choi, S.B.: Direct adaptive longitudinal control of vehicle platoons. IEEE Trans. Veh. Technol. 50(1), 150–161 (2001)

    Article  Google Scholar 

  35. Takagi, K., Morikawa, K., Ogawa, T., Saburi, M.: Road environment recognition using on-vehicle lidar. In: IEEE Intelligent Vehicles Symposium, pp. 120–125 (2006)

  36. Vidal, R., Shakernia, O., Kim, H., Shim, D., Sastry, S.: Probabilistic pursuit-evasion games: theory, implementation, and experimental evaluation. IEEE Trans. Robot. Autom. 18(5), 662–669 (2002)

    Article  Google Scholar 

  37. Wang, R., Xu, Y., Libin, Zhao, Y.: A vision-based road edge detection algorithm. In: Intelligent Vehicle Symposium, 2002. IEEE, vol. 1, pp. 141–147 (2002)

  38. Welch, G., Bishop, G.: An introduction to the kalman filter. Tech. rep., University of North Carolina (2006)

  39. Werbos, P.: ADP: Goals, opportunities, and principles. In: J. Si, A.G. Barto, W.B. Powell, D.W. II (eds.) Handbook of Learning and Approximate Dynamic Programming. IEEE Press (2004)

  40. Xu, B., Kurdila, A., Stilwell, D.: A hybrid receding horizon control method for path planning in uncertain environments. In: Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on, pp. 4887–4892 (2009)

  41. Yong, C., Barth, E.J.: Real-time dynamic path planning for dubins’ nonholonomic robot. In: Proc. 45th IEEE Conference on Decision & Control (2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian J. Goode.

Additional information

Authors sponsored by ONR Contract No. N00014-06-1-0356

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goode, B.J., Roan, M.J. A Differential Game Theoretic Approach for Two-Agent Collision Avoidance with Travel Limitations. J Intell Robot Syst 67, 201–218 (2012). https://doi.org/10.1007/s10846-012-9657-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-012-9657-x

Keywords

Navigation