Skip to main content
Log in

Smooth transition between different gaits of a hexapod robot via a central pattern generators algorithm

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper focuses on the topic of smooth gait transition of a hexapod robot by a proposed central pattern generator (CPG) algorithm. Through analyzing the movement characteristics of the real insects, it is easy to generate kinds of gait patterns and achieve their smooth transition if we employ a series of oscillations with adjustable phase lag. Based on this concept, a CPG model is proposed, which is constructed by an isochronous oscillators and several first-order low-pass filters. As an application, a hexapod robot and its locomotion control are introduced by converting the CPG signal to robot’s joint space. Simulation and real world experiment are completed to demonstrate the validity of the proposed CPG model. Through measuring the position of the body center and the distance between footpoints and ground, the smooth gait transition can be achieved so that the effectiveness of the proposed method is verified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Quinn, R.D., Ritzmann, R.E.: Construction of a hexapod robot with cockroach kinematics benefits both robotics and biology. Connect. Sci. 10(3,4), 239–254 (1998)

    Article  Google Scholar 

  2. Go, Y., Yin, X., Bowling, A.: Navigability of multi-legged robots. IEEE/ASME Trans. Mechatron. 11(1), 1–8 (2006)

    Article  Google Scholar 

  3. Moore, E.Z., Campbell, D., Grimminger, F., Buehler, M.: Reliable stair climbing in the simple hexapod ‘RHex’. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA), pp. 2222–2227 (2002)

  4. Duan, X.J., Chen, W.H., Yu, S.Q., Liu, J.M.: Tripod gaits planning and kinematics analysis of a hexapod robot. In: Proceedings of IEEE International Conference on Control and Automation (ICCA), pp. 1850–1855 (2009)

  5. Ren, G.J., Chen, W.H., Chen, B., Wang, J.H.: Antenna sensor based on PSD and application mobile robot. J. Beihang Univ. (in Chinese) 36(5), 601–605 (2010)

    Google Scholar 

  6. Ren, G.J., Chen, W.H., Chen, B., Wang, J.H.: Mechanism design and analysis of cockroach robot based on double four-bar linkage. J. Mech. Eng. 47(11), 14–22 (2011)

    Article  Google Scholar 

  7. Delcomyn, F.: Walking robots and the central and peripheral control of locomotion in insects. Auton. Robots 7(3), 259–270 (1999)

    Article  Google Scholar 

  8. Hooper, S.L.: Central pattern generators. Curr. Biol. 10(5), R176–R179 (2000)

    Article  MathSciNet  Google Scholar 

  9. Rossignol, S.: Locomotion and its recovery after spinal injury. Curr. Opin. Neurobiol. 10(6), 708–716 (2000)

    Article  Google Scholar 

  10. Cohen, A.H., Holmes, P.H., Rand, R.H.: The nature of the coupling between segmental oscillators of the lamprey spinal generator for locomotion: a mathematic model. J. Math. Biol. 13, 345–369 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  11. Matsuoka, K.: Mechanisms of frequency and pattern control in the neural rhythms generators. Biol. Cybern. 56, 345–353 (1987)

    Article  Google Scholar 

  12. Fukuoka, Y., Kimura, H., Cohen, A.H.: Adaptive dynamic walking of a quadruped robot on irregular terrain based on biological concepts. Int. J. Rob. Res. 22(3–4), 187–202 (2003)

    Article  Google Scholar 

  13. Kimura, H., Fukuoka, Y., Konaga, K., Hada, Y., Takase, K.: Towards 3D adaptive dynamic walking of a quadruped robot on irregular terrain by using neural system model. In: Proceedings of IEEE/RSJ International Conference of Intelligent Robots and Systems (IROS), pp. 2312–2317 (2001)

  14. Kimura, H., Fukuoka, Y., Cohen, A.H.: Adaptive dynamic walking of a quadruped robot on natural ground based on biological concepts. Int. J. Rob. Res. 26(5), 475–490 (2007)

    Article  Google Scholar 

  15. Taga, G., Yamaguchi, Y., Shimizu, H.: Self-organized control of bipedal locomotion by neural oscillators in unpredictable environment. Biol. Cybern. 65, 147–159 (1991)

    Article  MATH  Google Scholar 

  16. Arena, P., Fortuna, L., Frasca, M.: Multi-template approach to realize central pattern generators for artficial locomotion control. Int. J. Circuit Theory Appl. 30(4), 441–458 (2002)

    Article  MATH  Google Scholar 

  17. Arena, P., Fortuna, L., Frasca, M.: Attitude control in walking hexapod robots: an analogic spatio-temporal approach. Int. J. Circuit Theory Appl. 30(4), 349–362 (2002)

    Article  MATH  Google Scholar 

  18. Arena, P., Fortuna, L., Frasca, M., Sicurella, G.: An adaptive, self-organizing dynamical system for hierarchical control of bio-inspired locomotion. IEEE Trans. Syst. Man Cybern. 34(4), 1823–1837 (2004)

    Article  Google Scholar 

  19. Inagaki, S., Yuasa, H., Arai, T.: CPG model for autonomous decentralized multi-legged robot systemgeneration and transition of oscillation patterns and dynamics of oscillators. Robot. Auton. Syst. 44, 171–179 (2003)

    Article  Google Scholar 

  20. Inagaki, S., Yuasab, H., Suzuki, T., Arai, T.: Wave CPG model for autonomous decentralized multi-legged robot: gait generation and walking speed control. Robot. Auton. Syst. 54, 118–126 (2006)

    Article  Google Scholar 

  21. Manoonpong, P., Pasemann, F., Wörgötter, F.: Sensor-driven neural control for omnidirectional locomotion and versatile reactive behaviors of walking machines. Robot. Auton. Syst. 56, 265–288 (2008)

    Article  Google Scholar 

  22. Ijspeert, A.J., Crespi, A., Ryczko, D., Cabelguen, J.M.: From swimming to walking with a salamander robot driven by a spinal cord model. Science 315(5817), 1416–1420 (2007)

    Article  Google Scholar 

  23. Steingrube, S., Timme, M., Wörgötter, F., Manoonpong, P.: Self-organized adaptation of a simple neural circuit enables complex robot behaviour. Nat. Phys. 6, 224–230 (2010)

    Article  Google Scholar 

  24. Ijspeert, A.J.: Central pattern generators for locomotion control in animals and robots: a review. Neural Netw. 21(4), 642–653 (2008)

    Article  Google Scholar 

  25. Hughes, G.M.: Locomotion: terrestrial. In: Rockstein, M. (ed.) The Physiology of Insecta, pp. 227–254. Academic Press, New York (1965)

    Google Scholar 

  26. Wilson, D.M.: Insect walking. Annu. Rev. Entomol. 11, 103–121 (1966)

    Article  Google Scholar 

  27. Donner, M.D.: Real-time Control of Walking. Birkhauser, Boston (1987)

    Google Scholar 

  28. Kar, D.C.: Design of statically stable walking robot: a review. J. Robot. Syst. 20(11), 671–686 (2003)

    Article  MATH  Google Scholar 

  29. Buchli, J., Righetti, L., Ijspeert, A.J.: Engineering entrainment and adaptation in limit cycle systems—from biological inspiration to applications in robotics. Biol. Cybern. 95(6), 645–664 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kimura, H., Fukuoka, Y.: Adaptive dynamic walking of the quadruped on irregular terrain—autonomous adaptation using neural system model. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA), pp. 436–443 (2000)

  31. Ritzmann, R.E., Quinn, R.D., Fischer, M.S.: Convergent evolution and locomotion through complex terrain by insects, vertebrates and robots. Arthropod Struct Develop. 33, 361–379 (2004)

    Article  Google Scholar 

  32. Manoonpong, P., Pasemann, F., Wörgötter, F.: Reactive neural control for phototaxis and obstacle avoidance behavior of walking machines. International Journal of Mechanical Systems Science and Engineering 1(3), 172–177 (2007)

    Google Scholar 

  33. Uchitane, T., Hatanaka, T., Uosaki, K.: Evolution strategies for biped locomotion learning using nonlinear oscillators. In: Proceedings of SICE Annual Conference 2010, pp. 1458–1461 (2010)

  34. Righetti, L., Ijspeert, A.J.: Design methodologies for central pattern generators: an application to crawling humanoids. In: Proceedings of Robotics: Science and Systems (RSS), pp. 191–198 (2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanjiao Ren.

Additional information

This work is supported by National Natural Science Foundation of China (NSFC) under the research project 61175108 and National 863 Program of China under the research project 2011AA040902. This work is also supported by the Innovation Foundation of BUAA for PhD Graduates.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(MPG 5.07 MB)

(MPG 3.67 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, W., Ren, G., Zhang, J. et al. Smooth transition between different gaits of a hexapod robot via a central pattern generators algorithm. J Intell Robot Syst 67, 255–270 (2012). https://doi.org/10.1007/s10846-012-9661-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-012-9661-1

Keywords

Navigation