Skip to main content
Log in

Autonomous Path Tracking of a Kinematic Airship in Presence of Unknown Gust

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

The trajectory tracking problem of autonomous lighter than air vehicles in the presence of wind gusts is studied in this paper. The airship is represented as one point which is its center of volume, and only the kinematic equations are considered for the path tracking design. The control algorithm uses the Lyapunov theory and the Sontag’s universal stabilizing feedback. The proposed control laws are robust, by construction, with respect to uncertainties in the model and unknown external parameters. Numerical simulations are carried out to illustrate the performance of the proposed control strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Khoury, G.A., Gillett, J.D.: Airship technology. In: Cambridge Aerospace Series, vol. 10. Cambridge University Press (1999)

    Google Scholar 

  2. Maggiore, P., Repici, G.M., Bois, P.: Unmanned airship control: avionic ground station and power supply. In: AIAA 5th Aviation, Technology, Integration, and Operations Conference (ATIO), 26–28 Septembre 2005, Arlington, Virginia, USA

  3. Liu, Y., Pan, Z., Stirling, D., Naghdy, F.: Control of autonomous airship. In: Proceedings of the 2009 IEEE International Conference on Robotics and Biomimetics (ROBIO), 19–23 December 2009, Guilin, China

  4. Wimmer, D.A., Bildstein, M., Well, K.H., Schlenker, M., Kungl, P., Kröplin, B.H.: Development and operation controllers for autonomous flight phases. In: Workshop on Aerial Robotics, IEEE International Conference on Intelligent Robots and Systems, pp. 55–68, Lausanne, Switzerland (2002)

  5. Mueller, J., Zhoa, Y., Paluszek, M.: Development of an aerodynamic model and control law design for a high altitude airship. In: Proceedings of the AIAA Unmanned Unlimited Conference, No. AIAA-6527, AIAA, Chicago, USA (2004)

  6. Elfes, A., Montgomery, J.F., Hall, J.L., Joshi, S.S., Payne, J., Bergh, C.F.: Autonomous flight control for a planetary exploration aerobot. In: Proceedings of AIAA Space 2005 Conference, Long Beach, CA (2005)

  7. Xia, G., Corbett, D.R.: Cooperative control systems of searching targets using unmanned blimps. In: Proceedings of the 5th Worth Congress on Intelligent Control and Automation, vol. 2, pp. 1179–1183, Hangzhou, P.R. China. IEEE Press (2004)

  8. De Pavia, E., Benjovengo, F., Bueno, S.: Sliding mode control for the path following of an unmanned airship. In: Proceeding of the 6th IFAC Symposium on Intelligent Autonomous Vehicles, vol. 6, part 1, Toulouse, France (2007)

  9. Van Der Zwaan, S., Perrone, M., Bernardino, A., Santos-Victor, J.: Control of an aerial blimp based on visual input. In: Proceedings of the 8th International Symposium on Intelligent Robotic Systems, Reading, UK (2000)

  10. Azinheira, J.R., Rives, P., Carvalho, J.R.H., Silveira, G.F., De Paiva, E.C., Bueno, S.S.: Visual servo control for the hovering of an outdoor robotic airship. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 2787–2792, Washington, DC, USA (2002)

  11. Silveira, G.F., et al.: Optimal visual servoed guidance of outdoor autonomous robotic airships. In: Proceedings of the American Control Conference, pp. 779–784, Anchorage (2002)

  12. Silveira, G.F., Azinheira, J.R., Rives, P., Bueno, S.S.: Line following visual servoing for aerial robots combined with complementary sensors. In: Proceedings of the 11th International Conference on Advanced Robotics, Coimbra, Portugal (2003)

  13. Fukao, T., Fujitaniy, K., Kanade, T.: Image-based tracking control of a blimp. In: Proceedings of the 42nd IEEE Conference on Decision and Control, pp. 3462–3467, Hawaii, USA (2003)

  14. Hacker, J., Kroplin, B.H.: An experimental study of visual flight trajectory tracking and pose prediction for the automatic computer control of a miniature airship. In: Proceedings of the SPIE International Society for Optical Engineering, pp. 25–36 (2003)

  15. Kawai, Y., Kitagawa, S., Izoe, S., Fujita, M.: An unmanned planar blimp on visualfeedback control: experimental results. In: Proceedings of the 42nd SICE Annual Conference, pp. 680–685 (2003)

  16. Rao, J., Gong, Z., Luo, J., Xie, S.: Unmanned airships for emergency management. In: Proceedings of the IEEE International Workshop on Safety, Security and Rescue Robotics, pp. 125–130, Kobe, Japan. IEEE Press (2005)

  17. Rao, J., Gong, Z., Luo, J., Xie, S.: A flight control and navigation system of a small size unmanned airship. In: Proceedings of the IEEE International Conference on Mechatronics and Automation, pp. 1491–1496, Niagara Falls, Canada. IEEE Press (2005)

  18. Moutinho, A., Azinheira, J.R.: Stability and robustness analysis of the AURORA airship control system using dynamic inversion. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, pp. 2265–2270. IEEE, Washington, D.C. (2005)

  19. Bestaoui, Y., Hima, S.: Trajectory tracking of a dirigible in a high constant altitude flight. In: Proceedings of the 5th IFAC Symposium on Nonlinear Control Systems, Saint Petersburg, Russia (2001)

  20. Wu, X., Moog, C.H., Martinez, L.A.M., Hu, Y.: Nonlinear Control of a Buoyancy-Driven Airship. In: Proceedings of the 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference, 16–18 December 2009, Shanghai, China (2009)

  21. Solaque, L., Pinzon, Z., Duque, M.: Nonlinear control of the airship cruise flight phase with dynamical decoupling. In: Electronics, Robotics and Automotive Mechanics Conference (CERMA) (2008)

  22. Beji, L., Abichou, A., Bestaoui, Y.: Stabilization of a nonlinear underactuated autonomous airship—a combined averaging and backstepping approach. In: Proceedings of the 3rd International Workshop on Robot Motion and Control (RoMoCo), Bukowy Dworek, Poland (2002)

  23. Beji, L., Abichou, A.: Tracking control of trim trajectories of blimp for ascent and descent flight maneuvers. Int. J. Control 78(10), 706–719 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Repoulias, F., Papadopoulos, E.: Robotic airship trajectory tracking control using a backstepping methodology. In: Proceedings 2008 IEEE International Conference on Robotics and Automation, 19–23 May 2008, Pasadena, CA, USA (2008)

  25. Bang, H., Lee, S., Lee, H.: Nonlinear trajectory tracking using vectorial backsteeping approach. In: International Conference on Control, Automation and Systems, 14–17 October 2008, in COEX, Seoul, Korea (2008)

  26. Murguia-Rendon, G., Rodriguez-Cortes, H., Velasco-Villa, M.: Trajectory tracking control for the planar dynamics of a thrust vectored airship. In: Proceedings of 52nd IEEE International Midwest Symposium on Circuits and Systems (MWSCAS), 2–5 August 2009

  27. Park, C.S., Lee, H., Tahk, M.J., Bang, H.: Airship control using neural network augmented model inversion. In: Proceedings of the IEEE Conference on Control Applications, pp. 558–563 (2003)

  28. Jia, R., Frye, M.T., Qian, C.: Control of an airship using partical swarm optimization and neural network. In: Proceedings of the 2009 IEEE International Conference on Systems, Man, and Cybernetics, San Antonio, TX, USA (2009)

  29. Zhang, Y., Qu, W.D., Xi, Y.G., Cai, Z.L.: Adaptive stabilization and trajectory tracking of airship with neutral buoyancy. Acta Autom. Sin. 34(11), 1437–1440 (2008)

    Article  MathSciNet  Google Scholar 

  30. Fukushima, H., Saito, R., Matsumo, F.: Model predictive control of an autonomous blimp with input and output constraints. In: proceedings of the 2006 IEEE International Conference on Control Applications, 4–6 October 2006, Munich, Germany (2006)

  31. Fukao, T., Kanzawa, T., Osuka, K.: Inverse optimal tracking control of an aerial blimp robot. In: Proceedings of the 5th International Workshop on Robot Motion and Control (RoMoCo), 23–25 June 2005, Poland (2005)

  32. Munoz, L.E., Santos, O., Castillo, P.: Robust nonlinear real-time control strategy to stabilize a PVTOL aircraft in crosswind. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (2010)

  33. Vinh, N.X.: Flight Mechanics of High-Performance Aircraft. Cambridge University Press (1993)

  34. Hull, D.G.: Fundamentals of Airplane Flight Mechanics. Springer (2007)

  35. Bestaoui, Y.: Modeling and trajectory generation of lighter than air aerial robot. In: Kozlowski, K. (ed.) Robot Motion and Control 2007, LNCIS 360, pp. 3–28. Springer (2007)

  36. Imado, F., Heike, Y., Kinoshita, T.: Reaserch on a new aircraft point-mass model. J. Aircr. 48(4), 1121–1130 (2011)

    Article  Google Scholar 

  37. Levine, W.S.: The Control Handbook, Second Edition: Control System, Advenced Methods. CRC Press, Taylor & Francis Group (2011)

  38. Moutinho, A.: Modeling and nonlinear control for airship autonomous flight. PhD thesis, Universidade Técnica De Lisboa, Instituto Superior Técnico (2007)

  39. Mueller, J.B., Zhao, Y.J., Garrad, W.L.: Optimal ascent trajectories for stratospheric airships using wind energy. J. Guid. Control Dyn. 32(4), 1232–1240 (2009)

    Article  Google Scholar 

  40. Etele, J.: Overview of wind gust modelling with application to autonomous low-level UAV control. Mechanical and Aerospace Engineering Department, Carelton University, Ottawa, Canada (2006)

  41. Nelson, R.C.: Flight Stability and Automatic Control. McGraw-Hill (1989)

  42. Mclean, D.: Automatic Flight Control Systems. Prentice Hall (1990)

  43. Jurdjevic, V.: Geometric control theory. In: Cambridge Studies in Advanced Mathematics (2008)

  44. Lafferiere, G., Sussmann, J.H.: A Differential Geometric Approach to Motion Planning. Kluwer (1993)

  45. Li, Z., Canny, J.F.: Non Holonomic Motion Planning. Kluwer Academic, Berlin (1992)

    Google Scholar 

  46. Bloch, A.M.: Nonholonomic Mechanics and Control. Springer (2003)

  47. Nijmeijer, H., Van Der Schaft, A.: Nonlinear Dynamical Control Systems. Springer (1990)

  48. Sussmann, H.J.: A general theorem on local controllability. SIAM J. Control Optim. 25, 158–195 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  49. Freemann, R.A., Kokotovic, P.V.: Robust Nonlinear Control Design: State-Space and Lyapunov Techniques. Birkhauser (1996)

  50. Bestaoui, Y., Kahale, E.: Generation of time optimal trajectories of an autonomous airship. In: The 8th International Workshop on Robot Motion and Control (RoMoCo ’11), Bukowy Dworek, Poland, 15–17 June 2011

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Castillo Garcia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kahale, E., Castillo Garcia, P. & Bestaoui, Y. Autonomous Path Tracking of a Kinematic Airship in Presence of Unknown Gust. J Intell Robot Syst 69, 431–446 (2013). https://doi.org/10.1007/s10846-012-9709-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-012-9709-2

Keywords

Navigation