Skip to main content
Log in

An IMU/UWB/Vision-based Extended Kalman Filter for Mini-UAV Localization in Indoor Environment using 802.15.4a Wireless Sensor Network

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Indoor localization of mobile agents using wireless technologies is becoming very important in military and civil applications. This paper introduces an approach for the indoor localization of a mini UAV based on Ultra-WideBand technology, low cost IMU and vision based sensors. In this work an Extended Kalman Filter (EKF) is introduced as a possible technique to improve the localization. The proposed approach allows to use a low-cost Inertial Measurement Unit (IMU) in the prediction step and the integration of vision-odometry for the detection of markers nearness the touchdown area. The ranging measurements allow to reduce the errors of inertial sensors due to the limited performance of accelerometers and gyros. The obtained results show that an accuracy of 10 cm can be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barshan, B., Durrant-Whyte, H.F.: Inertial navigation systems for mobile robots. IEEE Trans. Robot. Autom. 11(3), 328–342 (1995)

    Article  Google Scholar 

  2. Nemra, A., Aouf, N.: Robust ins/gps sensor fusion for uav localization using sdre nonlinear filtering. IEEE Sens. J. 10(4), 789–798 (2010)

    Article  Google Scholar 

  3. Abdelkrim, N., Aouf, N., Tsourdos, A., White, B.: Robust nonlinear filtering for ins/gps uav localization. In: 2008 16th Mediterranean Conference on Control and Automation, pp. 695–702 (2008)

  4. Sohn, S., Lee, B., Kim, J., Kee, C.: Vision-based real-time target localization for single-antenna gps-guided uav. IEEE Trans. Aerosp. Electron. Syst. 44(4), 1391–1401 (2008)

    Article  Google Scholar 

  5. Tisdale, J., Ryan, A., Kim, Z., Tornqvist, D., Hedrick, J.K.: A multiple uav system for vision-based search and localization. In: American Control Conference, pp. 1985–1990 (2008)

  6. Rady, S., Kandil, A.A., Badreddin, E.: A hybrid localization approach for uav in gps denied areas. In: 2011 IEEE/SICE International Symposium on System Integration (SII), pp. 1269–1274 (2011)

  7. Sahinoglu, Z., Gezici, S.: Ranging in the ieee 802.15.4a standard. In: Wireless and Microwave Technology Conference, 2006. WAMICON ’06. IEEE Annual, pp. 1–5 (2006)

  8. Rohrig, C., Muller, M.: Indoor location tracking in non-line-of-sight environments using a ieee 802.15.4a wireless network. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009. IROS 2009, pp. 552–557 (2009)

  9. Sikora, A., Groza, V.F.: Fields tests for ranging and localization with time-of-flight-measurements using chirp spread spectrum rf-devices. In: IEEE Instrumentation and Measurement Technology Conference Proceedings, 2007. IMTC 2007, pp. 1–6 (2007)

  10. Krishnan, S., Sharma, P., Guoping, Z., Woon, O.H.: A uwb based localization system for indoor robot navigation. In: IEEE International Conference on Ultra-Wideband, 2007. ICUWB 2007, pp. 77–82 (2007)

  11. Sayed, A.H., Tarighat, A., Khajehnouri, N.: Network-based wireless location: challenges faced in developing techniques for accurate wireless location information. IEEE Signal Process. Mag. 22(4), 24–40 (2005)

    Article  Google Scholar 

  12. Mao, G., Drake, S., Anderson, B.D.O.: Design of an extended kalman filter for uav localization. In: Information, Decision and Control, 2007. IDC ’07, pp. 224–229 (2007)

  13. Rullan-Lara, J., Salazar, S., Lozano, R.: Uav real-time location using a wireless sensor network. In: 2011 8th Workshop on Positioning Navigation and Communication (WPNC), pp. 18–23 (2011)

  14. Purvis, K.B., Astrom, K.J., Khammash, M.: Estimation and optimal configurations for localization using cooperative uavs. IEEE Trans. Control Syst. Technol. 16(5), 947–958 (2008)

    Article  Google Scholar 

  15. Benini, A., Mancini, A., Frontoni, E., Zingaretti, P., Longhi, S.: Adaptive extended kalman filter for indoor/outdoor localization using a 802.15.4a wireless network. In: Proceedings of the 5th European Conference on Mobile Robots ECMR 2011, pp. 315–320 (2011)

  16. Nanotron: Nanotron Technologies GmbH. http://www.nanotron.com. Accessed May 2012

  17. Ward, A.: In-building location systems. In: The Institution of Engineering and Technology Seminar on Location Technologies, 2007, pp. 1–18 (2007)

  18. Corrales, J.A., Candelas, F.A., Torres, F.: Hybrid tracking of human operators using imu/uwb data fusion by a kalman filter. In: Proceedings of the 3rd ACM/IEEE International Conference on Human Robot Interaction, HRI ’08, pp. 193–200, ACM, New York, NY, USA (2008)

    Chapter  Google Scholar 

  19. Hobley, S.: AR Drone C# SDK. http://www.stephenhobley.com/blog/2010/11/28/c-sdk-for-ar-dronenow-available/ (2010). Accessed December 2011

  20. Benini, A., Mancini, A., Minutolo, R., Longhi, S., Montanari, M.: A modular framework for fast prototyping of cooperative unmanned aerial vehicle. J. Intell. Robot. Syst. 65, 507–520 (2012). doi:10.1007/s10846-011-9577-1

    Article  Google Scholar 

  21. Mancini, A., Benini, A., Frontoni, E., Zingaretti, P., Longhi, S.: Coalition formation for unmanned quadrotors. In: Proceedings of the 7th International ASME/IEEE Conference on Mechatronics & Embedded Systems & Applications, pp. 315–320 (2011)

  22. Benini, A., Mancini, A., Frontoni, E., Zingaretti, P., Longhi, S.: A simulation framework for coalition formation of unmanned aerial vehicles. In: 2011 19th Mediterranean Conference on Control Automation (MED), pp. 406–411 (2011)

  23. SimplySim: SimplyCube. http://www.simplysim.net/ Accessed March 2011

  24. De Agostino, M., Manzino, A.M., Piras, M.: Performances comparison of different mems-based imus. In: Position Location and Navigation Symposium (PLANS), 2010 IEEE/ION, pp. 187–201 (2010)

  25. De Bento, M., Eissfeller, B., Machado, F.: How to deal with low performance imus in an integrated navigation system: Step by step. In: 2010 5th ESA Workshop on Satellite Navigation Technologies and European Workshop on GNSS Signals and Signal Processing (NAVITEC), pp. 1–10 (2010)

  26. Nebot, E., Durrant-Whyte, H.: Initial calibration and alignment of low-cost inertial navigation units for land vehicle applications. J. Robot. Syst. 16(2), 81–92 (1999)

    Article  MATH  Google Scholar 

  27. Scaramuzza, D., Fraundorfer, F.: Visual odometry [tutorial]. IEEE Robot. Automat. Mag. 18(4), 80–92 (2011)

    Article  Google Scholar 

  28. Ascani, A., Frontoni, E., Mancini, A., Zingaretti, P.: Feature group matching for appearance-based localization. In: IROS, pp. 3933–3938 (2008)

  29. Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern anal. Mach. Intell. 22, 1330–1334 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Benini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benini, A., Mancini, A. & Longhi, S. An IMU/UWB/Vision-based Extended Kalman Filter for Mini-UAV Localization in Indoor Environment using 802.15.4a Wireless Sensor Network. J Intell Robot Syst 70, 461–476 (2013). https://doi.org/10.1007/s10846-012-9742-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-012-9742-1

Keywords

Navigation