Skip to main content
Log in

Underwater Vehicle Localization with Complementary Filter: Performance Analysis in the Shallow Water Environment

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Rapid development of underwater technology during the last two decades yielded more affordable sensors and underwater vehicles, and, as a result, expanded their use from exclusively offshore industry towards smaller interdisciplinary research groups. Regardless of application, knowing the location of the vehicle operating underwater is crucial. Relatively inexpensive solution is sensor fusion based on a dynamic model of the vehicle aided by a Doppler Velocity Log and a Ultra-Short Base Line position system. Raw data from the sensors are highly asynchronous and susceptible to outliers, especially in shallow water environment. This paper presents detailed sensor analysis based on experimental data gathered in shallow waters, identifies outliers, presents an intuitive and simple sensor fusion algorithm and finally, discusses outlier rejection. The approach has been experimentally verified on medium size remotely operated vehicle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kinsey, J.C., Eustice, R.M., Whitcomb, L.L.: A survey of underwater vehicle navigation: recent advances and new challenges. In: Proc MCMC20067th IFAC Conference on Manoeuvring and Control of Marine Vehicles, Lisbon, Portugal, Invited paper (2006)

  2. Miller, P., Farrell, J., Zhao, Y., Djapic, V.: Autonomous underwater vehicle navigation. IEEE J. Oceanic Eng. 35(3), 663–678 (2010)

    Article  Google Scholar 

  3. Hegrenaes, O., Hallingstad, O.: Model-aided ins with sea current estimation for robust underwater navigation. IEEE J. Oceanic Eng. 36(2), 316–337 (2011)

    Article  Google Scholar 

  4. Lee, P.-M., Jun, B.-H., Kim, K., Lee, J., Aoki, T., Hyakudome, T.: Simulation of an inertial acoustic navigation system with range aiding for an autonomous underwater vehicle. IEEE J. Oceanic Eng. 32(2), 327–345 (2007)

    Article  Google Scholar 

  5. Willumsen, A., Hallingstad, O., Jalving, B.: Integration of range, bearing and doppler measurements from transponders into underwater vehicle navigation systems. In: OCEANS 2006, pp. 1–6 (2006)

  6. Jalving, B., Gade, K., Hagen, O., Vestgard, K.: A toolbox of aiding techniques for the hugin auv integrated inertial navigation system. In: OCEANS 2003. Proceedings, vol. 2, pp. 1146–1153 (2003)

  7. Hegrenaes, O., Berglund, E., Hallingstad, O.: Model-aided inertial navigation for underwater vehicles. In: IEEE International Conference on Robotics and Automation, 2008. ICRA 2008. pp. 1069–1076 (2008)

  8. Rigby, P., Pizzaro, O., Williams, S.: Towards geo-referenced auv navigation through fusion of usbl and dvl measurements. In: OCEANS 2006, pp. 1–6 (2006)

  9. Caruso, M.J.: Applications of magnetoresistive sensors in navigation systems. SAE Technical Paper 970602 (1997). doi:10.4271/970602. Link: http://papers.sae.org/970602/

  10. “Compass heading using magnetometers,” Application Note 203, Honeywell.

  11. Vasconselos, J.F., Elkaim, G., Silvestre, C., Oliveira, P., Cardeira, B.: A geometric approach to strapdown magnetometer calibration in sensor frame. IEEE Trans. Aerosp. Electron. Syst. 47(2), 1293–1306 (2008)

    Article  Google Scholar 

  12. Fossen, T.I.: Guidance and Control of Ocean Vehicles, pp. 6–12. Wiley, Chichester, England (1994)

    Google Scholar 

  13. McPhail, S., Pebody, M.: Range-only positioning of a deep-diving autonomous underwater vehicle from a surface ship. IEEE J. Oceanic Eng. 34(4), 669–677 (2009)

    Article  Google Scholar 

  14. Philips, D.: An evaluation of usbl and sbl acoustic systems and the optimisation of methods of calibration—part 2. Hydrogr. J. 109, 10–20 (2003)

    Google Scholar 

  15. Cooper, D.: System manual for fusion usbl navigation systems. User Manual, pp. 145–148 (2006)

  16. Calibration and verification of sonardyne usbl systems: White paper (2009)

  17. Snyder, J.: Doppler velocity log (dvl) navigation for observation-class rovs. In: OCEANS 2010, pp. 1–9 (2010)

  18. Fossen, T.I.: Marine Control Systems, p. 57. Marine Cybernetics, Trondheim, Norway (2002)

  19. Koh, T., Lau, M., Seet, G., Low, E.: A control module scheme for an underactuated underwater robotic vehicle. J. Intell. Robot. Syst. 46(2), 43–58 (2006)

    Article  Google Scholar 

  20. Sebastian, E., Sotelo, M.: Adaptive fuzzy sliding mode controller for the kinematic variables of an underwater vehicle. J. Intell. Robot. Syst. 49, 189–215 (2007)

    Article  Google Scholar 

  21. Refsnes, J.E., Sorensen, A.J.: Design of control system of torpedo shaped rov with experimental results. In: OCEANS ’04, MTS/IEEE TECHNO-OCEAN ’04, vol. 1, pp. 264–270 (2004)

  22. Refsnes, J.E., Sorensen, A.J., Pettersen, K.Y.: Output feedback control of an auv with experimental results. In: Proceedings of the 15th Mediterranean Conference on Control & Automation, pp. 1–8 (2007)

  23. Steinke, D., Buckham, B.: A kalman filter for the navigation of remotely operated vehicles. In: OCEANS, 2005. Proceedings of MTS/IEEE, vol. 1, pp. 581–588 (2005)

  24. Fossen, T.I., Strand, J.P.: Passive nonlinear observer design for ships using lyapunov methods: experimental results with a supply vessel. Automatica 35, 3–16 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  25. Merhav, S.: Aerospace Sensor Systems and Applications, p. 396. Springer, New York (1996)

    Book  Google Scholar 

  26. Alcocer, A., Oliveira, P., Pascoal, A.: Underwater acoustic positioning systems based on buoys with gps. In: Proceedings of 8th ECUA 06 (2006)

  27. Gustafsson, F.: Adaptive Filtering and Change Detection. Wiley, New York (2000)

    Google Scholar 

  28. Blanke, M., Kinnaert, M., Lunze, J., Staroswiecki, M.: Diagnosis and Fault-Tolerant Control. Springer, Berlin Heidelberg (2010)

    Google Scholar 

  29. Basseville, M., Nikiforov, I.V.: Detection of Abrupt Changes: Theory and Application. Prentice-Hall, New York (1993)

    Google Scholar 

  30. Caccia, M., Bono, R., Bruzzone, G., Veruggio, G.: Bottom-following for remotely operated vehicles. Control Eng. Pract. 11(4), 461–470 (2003)

    Article  Google Scholar 

  31. Augenstein, S., Rock, S.: Estimating inertial position and current in the midwater. In: Proceedings of the MTS/IEEE Oceans Conference and Exhibition (2008)

  32. Vaganay, J., Bellingham, J.G., Leonard, J.J.: Outlier rejection for autonomous acoustic navigation. In: Proceedings of IEEE Int. Conf. Robotics and Automation, pp. 2174–2181, (1996)

  33. Menold, P.H., Pearson, R.K., Allgower, F.: Online outlier detection and removal. In: Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99), pp. 1110–1133 (1999)

  34. Jouffroy, J., Opderbecke, J.: Underwater navigation using diffusion-based trajectory observers. IEEE J. Oceanic Eng. 32, 313–326 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Borovic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasilijevic, A., Borovic, B. & Vukic, Z. Underwater Vehicle Localization with Complementary Filter: Performance Analysis in the Shallow Water Environment. J Intell Robot Syst 68, 373–386 (2012). https://doi.org/10.1007/s10846-012-9766-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-012-9766-6

Keywords

Navigation