Skip to main content
Log in

A Simulation Environment for an Augmented Global Navigation Satellite System Assisted Autonomous Robotic Lawn-Mower

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper presents the software architecture that was developed to evaluate the performance of different Global Navigation Satellite Systems (GNSSs) and Satellite/Ground-Based Augmentation Systems for the localization and navigation of an autonomous robotic lawn-mower. In particular, a complete simulation environment has been developed to analyse the system performance obtained by adopting the future European GNSSs when GALILEO will be fully operative. Moreover, this tool has been adopted in the development phase of a precise GNSS-based localization system and developed within the MOW-BY-SAT project, an FP7 project funded by the European Commission; this architecture relies on an innovative algorithm that allows for a Real Time Kinematic localization system, while requiring only a pair of low-cost GPS receivers. The results show the validity of the developed localization and control architecture and the potential of the future European GALILEO system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. The MOW-BY-SAT project homepage: http://www.mow-by-sat.eu. Accessed 27 October (2011)

  2. Toran, F., Ventura, J., Lucas, R., Seynat, C., Chatre, E., Mathieu, M.L., Pereira, J., Ambrosy, P., Abanades, J.A., Ferreira, T., Rodríguez, F., Farre, F.: The EGNOS data access system (EDAS): the vehicle to the future EGNOS commercial data distribution service. European Journal of Navigation 5, 20–29 (2007)

    Google Scholar 

  3. Prasad, R., Ruggieri, M.: Applied Satellite Navigation Using GPS. GALILEO and Augmentation Systems, Artech House (2005). ISBN 1580538142

  4. BELROBOTICS homepage: http://www.belrobotics.com. Accessed 27 October (2011)

  5. NAV ON TIME homepage: http://www.navontime.com. Accessed 27 October (2011)

  6. Service Robots Group - Università di Catania: http://www.robotic.diees.unict.it. Accessed 27 October (2011)

  7. Caltabiano, D., Muscato, G., Russo, F.: Localization and self calibration of a robot for volcano exploration. In: 2004 IEEE International Conference on Robotics and Automation. Proceedings. ICRA ’04, vol. 1, pp. 586–591 (2004). doi:10.1109/ROBOT.2004.1307212

  8. Kaplan, E.D., Hegarty, C.: Understanding GPS: Principles and Applications, 2nd edn. Artech House (2005). ISBN: 9781580538947

  9. Grewal, M.S., Weill, L.R., Andrews, A.P.: Global Positioning Systems, Inertial Navigation, and Integration, 2nd edn. Wiley-Interscience (2007). ISBN: 9780470099711

  10. The GLScene Project homepage: http://glscene.sourceforge.net. Accessed 27 October (2011)

  11. The OpenGL Project homepage: http://www.opengl.org. Accessed 27 October (2011)

  12. Webpage of the U.S. Coast Guard Navigation Center. http://www.navcen.uscg.gov. Accessed 27 October (2011)

  13. Parkinson, B.W., Spilker, Jr., J.J.: Global Positioning System: Theory and Applications, vols. 1 and 2. American Institute of Aeronautics (1996)

  14. Kim, D., Langley, B.R.: GPS ambiguity resolution and validation: methodologies, trends and issues. In: Proceedings of the 7th GNSS Workshop – International Symposium on GPS/GNSS, Seoul, Korea (2000)

  15. Codol, J.M., Poncelet, M., Monin, A., Devy, M.: Safety robotic lawnmower with precise and low-cost L1-only RTK-GPS positioning. In: Proceedings of IROS Workshop on Perception and Navigation for Autonomous Vehicles in Human Environment, San Francisco, California, USA (2011)

  16. ION Robotic Lawn Mower Competition website: http://www.ion.org/satdiv/alc/index.cfm. Accessed 27 October (2011)

  17. Smith, J., Campbell, S., Morton, J.: Design and implementation of a control algorithm for an autonomous lawnmower. In: 48th Midwest Symposium on Circuits and Systems, 2005, vol. 1, pp. 456–459 (2005). doi:10.1109/MWSCAS.2005.1594136

  18. McNally, B., Stutzman, M., Korando, C., Macasek, J., Mantz, C., Miller, S., Morton, J., Campbell, S., Leonard, J.: The Miami red blade: an autonomous lawn mower. In: Proceedings of the 60th Annual Meeting of The Institute of Navigation, Dayton, OH (2004)

  19. Morin, P., Samson, C.: Motion control of wheeled mobile robots. In: Siciliano, B., Khatib, O. (eds.) Springer Handbook of Robotics. Springer (2008)

  20. Gleason, S., Gebre-Egziabher, D.: GNSS Applications and Methods. Artech House (2009)

  21. Del Re, E., Ruggieri, M.: Satellite Communications and Navigation Systems. Springer (2008)

  22. Greenwood, P.E.: Nikulin. A Guide to Chi-squared Testing. Wiley, M.S. (1996)

  23. Jarvis, R.: An all-terrain intelligent autonomous vehicle with sensor-fusion-based navigation capabilities. Contr. Eng. Pract. 4(4), 481–486 (1996)

    Article  Google Scholar 

  24. Yang, Y., Farrell, J.A.: Magnetometer and differential carrier phase GPS-aided INS for advanced vehicle control. IEEE Trans. Robot. Autom. 19(2), 269–282 (2003)

    Article  Google Scholar 

  25. Jang, J., Kee, C.: Flight test of attitude determination system using multiple GPS antennae. J. Navig. 59, 119–133 (2006)

    Google Scholar 

  26. Bevly, D.M.: Global Positioning System (GPS) a low-cost velocity sensor for correcting inertial sensor errors on ground vehicles. J. Dyn. Syst. Meas. Contr. 126, 255–264 (2004)

    Article  Google Scholar 

  27. Gilbreath, M.B., Bruch, M.H, Gilbreath, G.A., Muelhauser, J.W., Lum, J.Q.: Accurate waypoint navigation using non-differential GPS. In: AUVSI Unmanned Systems 2002, Lake Buena Vista, FL (2002)

  28. Poncelet, M.: Control device for one or more self-propelled mobile apparatus. Patent No. US2011/0142099 (2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmelo Donato Melita.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melita, C.D., Muscato, G. & Poncelet, M. A Simulation Environment for an Augmented Global Navigation Satellite System Assisted Autonomous Robotic Lawn-Mower. J Intell Robot Syst 71, 127–142 (2013). https://doi.org/10.1007/s10846-012-9770-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-012-9770-x

Keywords

Mathematics Subject Classification (2010)

Navigation