Skip to main content
Log in

Fuzzy Control of a Helio-Crane

Comparison of Two Control Approaches

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

In this paper we present a comparison of two fuzzy-control approaches that were developed for use on a non-linear single-input single-output (SISO) system. The first method is Fuzzy Model Reference Learning Control (FMRLC) with a modified adaptation mechanism that tunes the fuzzy inverse model. The basic idea of this method is based on shifting the output membership functions in the fuzzy controller and in the fuzzy inverse model. The second approach is a 2 degrees-of-freedom (2 DOF) control that is based on the Takagi-Sugeno fuzzy model. The T-S fuzzy model is obtained by identification of evolving fuzzy model and then used in the feed-forward and feedback parts of the controller. An error-model predictive-control approach is used for the design of the feedback loop. The controllers were compared on a non-linear second-order SISO system named the helio-crane. We compared the performance of the reference tracking in a simulation environment and on a real system. Both methods provided acceptable tracking performance during the simulation, but on the real system the 2 DOF FMPC gave better results than the FMRLC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zadeh, L.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  2. Procyk, T., Mamdani, E.: A linguistic self-organizing process controller. Automatica 15(1), 15–30 (1979)

    Article  MATH  Google Scholar 

  3. Shao, S.: Fuzzy self-organizing controller and its application for dynamic processes. Fuzzy Sets Syst. 26(2), 151–164 (1988)

    Article  Google Scholar 

  4. Layne, J., Passino, K.: Fuzzy model reference learning control. In: First IEEE Conference on Control Applications, pp. 686–691. IEEE (1992)

  5. Åström, K.J., Wittenmark, B.: Adaptive Control, 2nd edn. Dover Publications (2008)

  6. Yuan, Y., Feng, Y., Gu, W.: Fuzzy model reference learning control for aircraft pitch autopilot design. In: 8th Control, Automation, Robotics and Vision Conference, ICARCV 2004, vol. 3, pp. 1923–1927. IEEE (2004)

  7. Layne, J., Passino, K.: Fuzzy model reference learning control. J. Intell. Fuzzy Syst. 4(1), 33–47 (1996)

    Google Scholar 

  8. Ling, D.: Fuzzy model reference learning control for a nonlinear model of hydrogenerator unit. In: International Workshop on Intelligent Systems and Applications, pp. 1–4. IEEE (2009)

  9. Zhong, L.: Application of fuzzy model reference learning control in hydraulic power sets. J. Power Eng. 5, 680–683 (2006)

    Google Scholar 

  10. Sheppard, M., Tarbouchi, M.: Design and implementation of a stable fuzzy model reference learning controller applied to a rigid-link manipulator. In: IEEE International Conference on Industrial Technology, vol. 3, pp. 1186–1191. IEEE (2004)

  11. Moudgal, V., Kwong, W., Passino, K., Yurkovich, S.: Fuzzy learning control for a flexible-link robot. IEEE Trans. Fuzzy Syst. 3(2), 199–210 (1995)

    Article  Google Scholar 

  12. Zhen, L., Xu, L.: Fuzzy learning enhanced speed control of an indirect field-oriented induction machine drive. IEEE Trans. Control Syst. Technol. 8(2), 270–278 (2000)

    Article  Google Scholar 

  13. Rehman, H.u., Dhaouadi, R.: A fuzzy learning–sliding mode controller for direct field-oriented induction machines. Neurocomputing 71(13–15), 2693 (2008)

    Article  Google Scholar 

  14. Ismail, A.: Fuzzy model reference learning control of multi-stage flash desalination plants. Desalination 116(2–3), 157–164 (1998)

    Article  Google Scholar 

  15. Oltean, S.E., Grif, H., Duka, A.V.: Electron beam focusing and deflection control systems. In: Interdisciplinarity in Engineering—Scientific International Conference, pp. 1–6 (2007)

  16. Zhang, J.l., Ning, N., Zheng, M.y.: Application of fuzzy model reference learning control in dynamic hot-box device. J. Harbin Inst. Technol. 4(2), 36–47 (2006)

    Google Scholar 

  17. Xu, S., Pan, H.: Coke oven temperature control based on fuzzy model reference learning control. Control and Instruments in Chemical Industry 3(2), 10–16 (2008)

    Google Scholar 

  18. Su, Y., Zheng, C., Duan, B.: Fuzzy learning tracking of a parallel cable manipulator for the square kilometre array. Mechatronics 15(6), 731–746 (2005)

    Article  Google Scholar 

  19. Naceri, A., Ramdani, Y., Bounouna, H.: A fuzzy model reference learning controller of ASMES to improve transient power system stability. Mediterranean J. Measure. Control 3(3), 126–133 (2007)

    Google Scholar 

  20. Kwong, W., Passino, K.: Dynamically focused fuzzy learning control. IEEE Trans. Syst. Man Cybern. Part B 26(1), 53–74 (1996)

    Article  Google Scholar 

  21. Dessouky, A., Tarbouchi, M.: Model reference adaptive fuzzy controller for induction motor using auto-attentive approach. In: Proceedings of the 2000 IEEE International Symposium on Industrial Electronics, vol. 2, pp. 719–723. IEEE (2000)

  22. Oltean, S., Abrudean, M., Gligor, A.: MRAC and FMRLC for a plant with time varying parameters. In: IEEE International Conference on Automation, Quality and Testing, Robotics, vol. 1, pp. 62–67. IEEE (2006)

  23. Kopasakis, G.: Adaptive performance seeking control using fuzzy model reference learning control and positive gradient control. In: 33rd Joint Propulsion Conference and Exhibit, pp. 1–9 (1997)

  24. Passino, K.M., Yurkovich, S.: Fuzzy Control. Addison-Wesley (1998)

  25. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. 15(1), 116–132 (1985)

    Article  MATH  Google Scholar 

  26. Chiu, S.L.: Fuzzy model identification based on cluster estimation. J. Intell. Fuzzy Syst. 2, 267–278 (1994)

    MathSciNet  Google Scholar 

  27. Angelov, P.P., Filev, D.P.: An approach to online identification of Takagi-Sugeno fuzzy models. IEEE Trans. Syst. Man Cybern., Part B 34(1), 484–498 (2004)

    Article  Google Scholar 

  28. Memon, M.A., Angelov, P., Ahmed, H.: An approach to real-time color-based object tracking. In: International Symposium on Evolving Fuzzy Systems, pp. 86–91. IEEE (2006)

  29. Angelov, P., Zhou, X.: Evolving fuzzy systems from data streams in real-time. In: International Symposium on Evolving Fuzzy Systems, pp. 29–35. IEEE (2006)

  30. Angelov, P., Filev, D.: Simpl_eTS: a simplified method for learning evolving Takagi-Sugeno fuzzy models. In: 14th IEEE International Conference on Fuzzy Systems, pp. 1068–1073. Reno, Nevada, USA (2005)

  31. Angelov, P.: Evolving Intelligent Systems: Methodology and Applications, chap. Evolving Takagi-Sugeno Fuzzy Systems From Streaming Data (eTS+), pp. 21–50. Wiley, New Jersey (2010)

    Book  Google Scholar 

  32. Lughofer, E., Klement, E.P.: FLEXFIS: a variant for incremental learning of Takagi-Sugeno fuzzy systems. In: 14th IEEE International Conference on Fuzzy Systems, pp. 915–920. IEEE, Reno, Nevada, USA (2005)

  33. Lughofer, E., Bouchot, J.L., Shaker, A.: On-line elimination of local redundancies in evolving fuzzy systems. Evolving Syst. 2(3), 165–187 (2011)

    Article  Google Scholar 

  34. Kasabov, N.K.: Evolving fuzzy neural networks for supervised/unsupervised online knowledge-based learning. IEEE Trans. Syst. Man Cyber. Part B 31(6), 902–918 (2001)

    Article  Google Scholar 

  35. Kasabov, N.: Evolving fuzzy neural networks — algorithms, applications and biological motivation. In: Methodologies for the Conceptation, Design and Application of Soft Computing, pp. 271–274. Japan (1998)

  36. Kasabov, N.K., Song, Q.: DENFIS: dynamic evolving neural-fuzzy inference system and its application for time-series prediction. IEEE Trans. Fuzzy Syst. 10(2), 144 (2002)

    Article  Google Scholar 

  37. Jang, J.S.R.: ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cyber. 23(3), 665–685 (1993)

    Article  Google Scholar 

  38. Azeem, M.F., Hanmandlu, H., Ahmad, N.: Structure identification of generalized adaptive neuro-fuzzy inference systems. IEEE Trans. Fuzzy Syst. 11(5), 666–681 (2003)

    Article  Google Scholar 

  39. Leng, G., Prasad, G., McGinnity, T.M.: An on-line algorithm for creating self-organizing fuzzy neural networks. Neural Netw. 17(10), 1477–1493 (2004)

    Article  MATH  Google Scholar 

  40. Rong, H.J., Sundararajan, N., Huang, G.B., Saratchandran, P.: Sequential adaptive fuzzy inference system (SAFIS) for nonlinear system identification and prediction. Fuzzy Sets Syst. 157(9), 1260–1275 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  41. Lin, F.J., Lin, C.H., Shen, P.H.: Self-constructing fuzzy neural network speed controller for permanent-magnet synchronous motor drive. IEEE Trans. Fuzzy Syst. 9(5), 751–759 (2001)

    Article  Google Scholar 

  42. Lin, C.T.: A neural fuzzy control system with structure and parameter learning. Fuzzy Sets Syst. 70(2–3), 183–212 (1995)

    Article  Google Scholar 

  43. Wu, S., Er, M.J.: Dynamic fuzzy neural networks — a novel approach to function approximation. IEEE Trans. Syst. Man Cyber. Part B 30(2), 358–364 (2000)

    Article  Google Scholar 

  44. Wu, S., Er, M.J., Gao, Y.: A fast approach for automatic generation of fuzzy rules by generalized dynamic fuzzy neural networks. IEEE Trans. Fuzzy Syst. 9(4), 578–594 (2001)

    Article  Google Scholar 

  45. Juang, C.F., Lin, C.T.: An online self-constructing neural fuzzy inference network and its applications. IEEE Trans. Fuzzy Syst. 6(1), 12–32 (1998)

    Article  Google Scholar 

  46. Tzafestas, S.G., Zikidis, K.C.: NeuroFAST: on-line neuro-fuzzy art-based structure and parameter learning TSK model. IEEE Trans. Syst. Man Cyber. Part B 31(5), 797–802 (2001)

    Article  Google Scholar 

  47. Platt, J.: A resource-allocating network for function interpolation. Neural Comput. 3(2), 213–225 (1991)

    Article  MathSciNet  Google Scholar 

  48. Deng, D., Kasabov, N.: Evolving self-organizing maps for on-line learning, data analysis and modeling. In: Proc. IJCNN 2000 Neural Networks Neural Computing: New Challenges Perspectives New Millenium, vol. 6, pp. 3–8. IEEE, New York (2000)

    Google Scholar 

  49. Fritzke, B.: A growing neural gas network learns topologies. Adv. Neural Inf. Process. Syst. 7, 845–865 (1995)

    Google Scholar 

  50. Soleimani-B, H., Lucas, C., Araabi, B.N.: Recursive Gath–Geva clustering as a basis for evolving neuro-fuzzy modeling. Evolving Syst. 1(1), 59–71 (2010)

    Article  Google Scholar 

  51. Dovžan, D., Škrjanc, I.: Recursive fuzzy c-means clustering for recursive fuzzy identification of time-varying processes. ISA Trans. 50(2), 159–169 (2011)

    Article  Google Scholar 

  52. Dovžan, D., Škrjanc, I.: Recursive clustering based on a Gustafson–Kessel algorithm. Evolving Syst. 2(1), 15–24 (2011)

    Article  Google Scholar 

  53. Dovžan, D., Škrjanc, I.: Predictive functional control based on an adaptive fuzzy model of a hybrid semi-batch reactor. Control Eng. Pract. 18(8), 979–989 (2010)

    Article  Google Scholar 

  54. Normey-Rico, J.E., Gòmez-Ortega, J., Camacho, E.F.: A Smith-predictor-based generalised predictive controller for mobile robot path-tracking. Control Eng. Pract. 7(6), 729–740 (1999)

    Article  Google Scholar 

  55. Rouhani, R., Mehra, R.K.: Model algorithmic control (MAC); basic theoretical properties. Automatica 18(4), 401–414 (1982)

    Article  MATH  Google Scholar 

  56. Richalet, J., O’Donovan, D.: Predictive functional control: principles and industrial applications. Advances in Industrial Control. Springer (2009)

  57. Richalet, J.: Industrial applications of model based predictive control. Automatica 29(5), 1251–1274 (1993)

    Article  MathSciNet  Google Scholar 

  58. Škrjanc, I., Matko, D.: Predictive functional control based on fuzzy model for heat-exchanger pilot plant. IEEE Trans. Fuzzy Syst. 8(6), 705–712 (2000)

    Article  Google Scholar 

  59. Lepetič, M., Škrjanc, I., Chiacchiarini, H.G., Matko, D.: Predictive functional control based on fuzzy model: comparison with linear predictive functional control and PID control. J. Intell. Robot. Syst. 36(4), 467–480 (2003)

    Article  MATH  Google Scholar 

  60. Blažič, S., Škrjanc, I.: Design and stability analysis of fuzzy model-based predictive control — a case study. J. Intell. Robot. Syst. 49(3), 279–292 (2007)

    Article  Google Scholar 

  61. Karer, G., Mušič, G., Škrjanc, I., Zupančič, B.: Feedforward control of a class of hybrid systems using an inverse model. Math. Comput. Simul. 82(3), 414–427 (2011)

    Article  MATH  Google Scholar 

  62. Malchow, F., Sawodny, O.: Model based feedforward control of an industrial glass feeder. Control Eng. Pract. 20(1), 62–68 (2012)

    Article  Google Scholar 

  63. Oriolo, G., De Luca, A., Vendittelli, M.: WMR control via dynamic feedback linearization: design, implementation, and experimental validation. IEEE Trans. Control Syst. Technol. 10(6), 835–852 (2002)

    Article  Google Scholar 

  64. Klančar, G., Škrjanc, I.: Tracking-error model-based predictive control for mobile robots in real time. Robot. Auton. Syst. 55(6), 460–469 (2007)

    Article  Google Scholar 

  65. Škrjanc, I., Klančar, G.: Optimal cooperative collision avoidance between multiple robots based on Bernstein-Beézier curves. Robot. Auton. Syst. 58(1), 1–9 (2010)

    Article  Google Scholar 

  66. Pao, L.Y., Butterworth, J.A., Abramovitch, D.Y.: Combined feedforward/feedback control of atomic force microscopes. In: American Control Conference, pp. 3509–3515. IEEE (2007)

  67. Chiu, C.S.: Mixed feedforward/feedback based adaptive fuzzy control for a class of MIMO nonlinear systems. IEEE Trans. Fuzzy Syst. 14(6), 716–727 (2006)

    Article  Google Scholar 

  68. Wu, Y., Zou, Q.: Robust inversion-based 2-DOF control design for output tracking: piezoelectric-actuator example. IEEE Trans. Control Syst. Technol. 17(5), 1069–1082 (2009)

    Article  Google Scholar 

  69. Passino, K.: Biomimicry for Optimization, Control, and Automation. Springer (2004)

  70. Cerman, O., Hušek, P.: Fuzzy model reference learning control with modified adaptation mechanism. In: Seventh International Conference on Natural Computation (ICNC), vol. 1, pp. 123–128. IEEE (2011)

  71. de Jesús Rubio, J.: Evolving Intelligent Systems: Methodology and Applications, chap. Stability analysis for an online evolving neuro-fuzzy recurrent network, pp. 173–199. Wiley, Hoboken, New Jersey (2010)

  72. Blažič, S., Škrjanc, I., Gerkšič, S., Dolanc, G., Strmčnik, S., Hadjiski, M.B., Stathaki, A.: Online fuzzy identification for an intelligent controller based on a simple platform. Eng. Appl. Artif. Intell. 22(4–5), 628–638 (2009)

    Google Scholar 

  73. Blazinšek, M., Arh, M., Škrjanc, I.: Comparison between the auto-tuning of PID, PFC and modified-PFC controllers. In: 7th Vienna Conference on Mathematical Modelling, MATHMOD 2012, pp. 1–6 (2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrej Zdešar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zdešar, A., Cerman, O., Dovžan, D. et al. Fuzzy Control of a Helio-Crane. J Intell Robot Syst 72, 497–515 (2013). https://doi.org/10.1007/s10846-012-9796-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-012-9796-0

Keywords

Mathematics Subject Classifications (2010)

Navigation