Skip to main content
Log in

A Market-based Solution to the Multiple Traveling Salesmen Problem

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper describes a market-based solution to the problem of assigning mobile agents to tasks. The problem is formulated as the multiple depots, multiple traveling salesmen problem (MTSP), where agents and tasks operate in a market to achieve near-optimal solutions. We consider both the classical MTSP, in which the sum of all tour lengths is minimized, and the Min-Max MTSP, in which the longest tour is minimized. We compare the market-based solution with direct enumeration in small scenarios, and show that the results are nearly optimal. For the classical MTSP, we compare our results to linear programming, and show that the results are within 1 % of the best cost found by linear programming in more than 90 % of the runs, with a significant reduction in runtime. For the Min-Max case, we compare our method with Carlsson’s algorithm and show an improvement of 5 % to 40 % in cost, albeit at an increase in runtime. Finally, we demonstrate the ability of the market-based solution to deal with changes in the scenario, e.g., agents leaving and entering the market. We show that the market paradigm is ideal for dealing with these changes during runtime, without the need to restart the algorithm, and that the solution reacts to the new scenarios in a quick and near-optimal way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Applegate, D.L., Bixby, R.E., Chvatal, V., Cook, W.J.: Concorde. http://www.tsp.gatech.edu/concorde/index.html (2004)

  2. Applegate, D.L., Bixby, R.E., Chvatal, V., Cook, W.J.: The Traveling Salesman Problem: A Computational Study, 1 edn. Princeton Series in Applied Mathematics. Princeton University Press, Princeton, New Jersey (2006)

    Google Scholar 

  3. Baker, A.D.: Market-based control: A Paradigm for Distributed Resource Allocation, chap. Metaphor or Reality: A Case Study Where Agents Bid with Actual Costs to Schedule a Factory, pp. 184–223. 9810222548. World Scientific Publishing Co. Pte. Ltd., P O Box 128, Farrer Road, Singapore 912805 (1996)

  4. Bektas, T.: The multiple traveling salesman problem: an overview of formulations and solution procedures. Omega 34(3), 209–219 (2006)

    Article  Google Scholar 

  5. Bertsimas, D.J., Ryzin, G.V.: A stochastic and dynamic vehicle routing problem in the euclidean plane. Oper. Res. 39(4), 601–615 (1991)

    Article  MATH  Google Scholar 

  6. Bullo, F., Frazzoli, E., Pavone, M., Savla, K., Smith, S.L.: Dynamic vehicle routing for robotic systems. Proc. IEEE 99(9), 1482–1504 (2011)

    Article  Google Scholar 

  7. Campbell, A.M., Vandenbussche, D., Hermann, W.: Routing for relief efforts. Transp. Sci. 42(2), 127–145 (2008)

    Article  Google Scholar 

  8. Carlsson, J., Ge, D., Subramaniam, A.: Lectures on global optimization. In: Chap. Solving Min-Max Multi-Depot Vehicle Routing Problem. Fields Institute Communications, illustrated edn., vol. 55, pp. 31–46. American Mathematical Society (2009)

  9. Choi, H.L., Brunet, L., How, J.P.: Consensus-based decentralized auctions for robust task allocation. IEEE Trans. Robot. 25(4), 912–926 (2009)

    Article  Google Scholar 

  10. Clearwater, S.H.: Market-Based Control: A Paradigm for Distributed Resource Allocation, chap. Preface, pp. v–xi. 9810222548. World Scientific Publishing Co. Pte. Ltd., Singapore (1996)

    Book  Google Scholar 

  11. Dorigo, M., Maniezzo, V., Colorni, A.: The ant system: optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. Part B 26(1), 29–41 (1996)

    Article  Google Scholar 

  12. Dudek, G., Jenkin, M., Milios, E., Wilkes, D.: A taxonomy for multi-agent robotics. Auton. Robots 3, 375–397 (1996)

    Article  Google Scholar 

  13. Feillet, D., Dejax, P., Gendreau, M.: Traveling salesman problem with profits. Transp. Sci. 39(2), 188–205 (2005). doi:10.1287/trsc.1030.0079

    Article  Google Scholar 

  14. Ferguson, D.F., Nickolaou, C., Sairamesh, J., Yemini, Y.: Market-Based Control: A Paradigm for Distributed Resource Allocation, chap. Economic Models for Allocating Resources in Computer Systems, pp. 156–183, 9810222548. World Scientific Publishing Co. Pte. Ltd., Singapore (1996)

    Book  Google Scholar 

  15. Gagliano, R.A., Mitchem, P.A.: Market-Based Control: a Paradigm for Distributed Resource Allocation, chap. Valuation of Network Computing Resources, pp. 28–52, 9810222548. World Scientific Publishing Co. Pte. Ltd., Singapore (1996)

    Book  Google Scholar 

  16. Giaccari, L.: Tspconvhull. MATLAB Central (2008)

  17. Golden, B.L., Laporte, G., Taillard, E.D.: An adaptive memory heuristic for a class of vehicle routing problems with minmax objective. Comput. Oper. Res. 24(5), 445–452 (1997)

    Article  MATH  Google Scholar 

  18. Gomory, R.E.: Outline of an algorithm for integer solutions to linear programs. Bull. Am. Math. Soc. 64, 275–278 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gurfil, P., Kivelevitch, E.: Flock properties effect on task assignment and formation flying of cooperating unmanned aerial vehicles. In: Proceedings of IMechE. Part G: J. Aerospace Engineering, vol. 221, pp. 401–418. Institute of Mechanical Engineers (2007). doi:10.1243/09544100JAERO120

  20. Harty, K., Cheriton, D.: Market-Based Control: A Paradigm for Distributed Resource Allocation, chap. A Market Approach to Operating System Memory Allocation, pp. 126–155, 9810222548. World Scientific Publishing Co. Pte. Ltd., Singapore (1996)

    Book  Google Scholar 

  21. Held, M., Karp, R.M.: A dynamic programming approach to sequencing problems. J. Soc. Ind. Appl. Math. 10(1), 196–210 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  22. IBM: Cplex. Web. http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/ (2012). Accessed 10 July 2012

  23. Jaillet, P., Wagner, M.R.: Generalized online routing: new competitive ratios, resource augmentation, and asymptotic analyses. Oper. Res. 56(3), 745–757 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Johnson, D.S., Mcgeoch, L.A.: Local Search in Combinatorial Optimization, chap. The Traveling Salesman Problem: A Case Study in Local Optimization, pp. 215–310. John Wiley and Sons, London (1997)

    Google Scholar 

  25. Karmani, R.K., Latvala, T., Agha, G.: On scaling multi-agent task reallocation using market-based approach. In: Proceedings of the First IEEE International Conference on Self-adaptive and Self-organizing Systems, pp. 173–182 (2007)

  26. Kirkpatrick, S., Gelatt, C.D. Jr., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kivelevitch, E., Cohen, K., Kumar, M.: Comparing the robustness of market-based task assignment to genetic algorithm. In: Proceedings of the 2012 AIAA Infotech@Aerospace Conference. AIAA, AIAA. AIAA-2012-2451 (2012)

  28. Kulkarni, A.J., Tai, K.: Probability collectives: a multi-agent approach for solving combinatorial optimization problems. Appl. Soft Comput. 10, 759–771 (2010). doi:10.1016/j.asoc.2009.09.006. http://www.sciencedirect.com/science/article/pii/S1568494609001665

    Article  Google Scholar 

  29. Kuwabara, K., Ishida, T., Nishibe, Y., Suda, T.: Market-Based Control: A Paradigm for Distributed Resource Allocation, chap. An Equilibratory Market-Based Approach for Distributed Resource Allocation and Its Application to Communication Network Control, pp. 53–73, 9810222548. World Scientific Publishing Co. Pte. Ltd., Singapore (1996)

    Book  Google Scholar 

  30. Lin, S., Kernighan, B.W.: An effective heuristic algorithm for the traveling-salesman problem. Oper. Res. 21(2), 498–516 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  31. Miliotis, P.: Using cutting planes to solve the symmetric travelling salesman problem. Math. Program. 15, 177–188 (1978). doi:10.1007/BF01609016

    Article  MathSciNet  MATH  Google Scholar 

  32. Mudrov, V.: A method of solution of the traveling salesman problem by means of integer linear programming (the problem of finding the hamiltonian paths of shortest length in a complete graph). Zhurnal Vychislennoi Fiziki (USSR). Abstract in: Int. Abstr. Oper. Res. 5(3), 1137–1139 (1965)

    MathSciNet  Google Scholar 

  33. Padberg, M., Rinaldi, G.: A branch-and-cut algorithm for the resolution of large-scale symmetric traveling salesman problems. SIAM Rev. 33, 60–100 (1991). doi:10.1137/1033004. http://dl.acm.org/citation.cfm?id=103864.103868

    Article  MathSciNet  MATH  Google Scholar 

  34. Passino, K., Polycarpou, M., Jacques, D., Pachter, M., Liu, Y., Yang, Y., Flint, M., Baum, M.: Cooperative control for autonomous air vehicles. In: Proceedings of the Cooperative Control Workshop, Florida (2000)

  35. Rasmussen, S., Chandler, P., Mitchell, J.W., Schumacher, C., Sparks, A.: Optimal vs. heuristic assignment of cooperative autonomous unmanned air vehicles. In: Proceedings of the AIAA Guidance, Navigation & Control Conference (2003)

  36. Schumacher, C., Chandler, P., Pachter, M.: Uav task assignment with timing constraints. AFRL-VA-WP-TP-2003-315. United States Air Force Research Laboratory (2003)

  37. Schumacher, C., Chandler, P.R., Rasmussen, S.: Task allocation for wide area search munitions via network flow optimization. In: Proceedings of the 2001 AIAA Guidance, Navigation, and Control Conference (2001)

  38. Shima, T., Rasmussen, S.J., Sparks, A.G., Passino, K.M.: Multiple task assignments for cooperating uninhabited aerial vehicles using genetic algorithms. Comput. Oper. Res. 33(11), 3252–3269 (2006). doi:10.1016/j.cor.2005.02.039. Part Special Issue: Operations Research and Data Mining

    Article  MATH  Google Scholar 

  39. Wooldridge, M.: An Introduction to Multi Agent Systems, 1 edn. John Wiley & Sons, England (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elad Kivelevitch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kivelevitch, E., Cohen, K. & Kumar, M. A Market-based Solution to the Multiple Traveling Salesmen Problem. J Intell Robot Syst 72, 21–40 (2013). https://doi.org/10.1007/s10846-012-9805-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-012-9805-3

Keywords

Mathematics Subject Classification (2010)

Navigation