Skip to main content
Log in

Optimal Trajectory Planning for Flexible Link Manipulators with Large Deflection Using a New Displacements Approach

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

The main objective of the present paper is to determine the optimal trajectory of very flexible link manipulators in point-to-point motion using a new displacement approach. A new nonlinear finite element model for the dynamic analysis is employed to describe nonlinear modeling for three-dimensional flexible link manipulators, in which both the geometric elastic nonlinearity and the foreshortening effects are considered. In comparison to other large deformation formulations, the motion equations contain constant stiffness matrix because the terms arising from geometric elastic nonlinearity are moved from elastic forces to inertial, reactive and external forces, which are originally nonlinear. This makes the formulation particularly efficient in computational terms and numerically more stable than alternative geometrically nonlinear formulations based on lower-order terms. In this investigation, the computational method to solve the trajectory planning problem is based on the indirect solution of open-loop optimal control problem. The Pontryagin’s minimum principle is used to obtain the optimality conditions, which is lead to a standard form of a two-point boundary value problem. The proposed approach has been implemented and tested on a single-link very flexible arm and optimal paths with minimum effort and minimum vibration are obtained. The results illustrate the power and efficiency of the method to overcome the high nonlinearity nature of the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yao, Y., Korayem, M.H., Basu, A.: Maximum allowable load of flexible manipulator for a given dynamic trajectory. Int. J. Robot. Comput. Integr. Manuf. 10(4), 301–309 (1993)

    Article  Google Scholar 

  2. Korayem, M.H., Heidari, A., Nikoobin, A.: Maximum allowable load of flexible mobile manipulators using finite element approach. Int. J. AMT 36(10), 606–617 (2008)

    Google Scholar 

  3. Korayem, M.H., Heidari, A.: Effect of payload variation on the residual vibration of flexible manipulators at the end of the given path. Sci. Iran. 16(4), 332–343 (2009)

    MATH  Google Scholar 

  4. Bakr, E.M.: Dynamic analysis of geometrically non-linear robot manipulators. Nonlinear Dyn. 11(4), 329–346 (1996)

    MathSciNet  Google Scholar 

  5. Simo, J.C., Vu-Quoc, L.: The role of nonlinear theories in transient dynamic analysis of flexible structures. J. Sound Vib. 119(1), 487–508 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  6. Korayem, M.H., Yao, Y., Basu, A.: Application of symbolic manipulation to inverse dynamics and kinematics of elastic robot. Int. J. Adv. Manuf. Technol. 9(5), 343–350 (1994)

    Article  Google Scholar 

  7. Shaker, M.C., Ghosal, A.: Nonlinear modeling of flexible manipulators using non-dimensional variables. ASME J. Comput. Nonlinear Dyn. 1(2), 123–134 (2006)

    Article  Google Scholar 

  8. Korayem, M.H., Haghpanahi, M., Heidari, H.R.: Maximum allowable dynamic load of flexible manipulators undergoing large deformation. Sci. Iran. 17(1), 61–74 (2010)

    MATH  Google Scholar 

  9. Damaren, C., Sharf, L.: Simulation of flexible-link manipulators with inertia and geometric nonlinearities. ASME J. Dyn. Syst. Meas. Control 117(1), 74–87 (1995)

    Article  MATH  Google Scholar 

  10. Mayo, J., Dominguez, J., Shabana, A.A.: Geometrically nonlinear formulations of beams in flexible multi-body dynamics. ASME J. Vib. Acoust. 117(4), 501–509 (1995)

    Article  Google Scholar 

  11. Kane, T.R., Ryan, R.R., Banerjee, A.K.: Dynamics of a cantilever beam attached to a moving base. J. Guid. Control 10(2), 139–151 (1987)

    Article  Google Scholar 

  12. Absy, H.E.L., Shabana, A.A.: Geometric stiffness and stability of rigid body modes. J. Sound Vib. 207(4), 465–496 (1997)

    Article  Google Scholar 

  13. Omar, M.A., Shabana, A.A.: A two-dimensional shear deformable beam for large rotation and deformation problems. J. Sound Vib. 243(3), 565–576 (2001)

    Article  Google Scholar 

  14. Wang, C.Y.E., Timoszyk, W.K., Bobrow, J.E.: Payload maximization for open chained manipulator: finding weightlifting motions for a Puma 762 robot. IEEE Trans. Robot. Autom. 17(2), 218–224 (2001)

    Article  Google Scholar 

  15. Wilson, D.G., Robinett, R.D., Eisler, G.R.: Discrete dynamic programming for optimized path planning of flexible robots. IEEE Int. Conf. Intell. Robot. Syst. 3(1), 2918–2923 (2004)

    Google Scholar 

  16. Korayem, M.H., Nikoobin, A.: Maximum load carrying capacity of mobile manipulators: optimal control approach. Robotica 27(1), 147–159 (2009)

    Article  Google Scholar 

  17. Mohri, A., Furuno, S., Yamamoto, M.: Trajectory planning of mobile manipulator with end-effector’s specified path. IEEE Int. Conf. Intell. Robot. Syst. 4(1), 2264–2269 (2001)

    Google Scholar 

  18. Park, K.J.: Trajectory flexible robot manipulator path design to reduce the endpoint residual vibration under torque constraints. J. Sound Vib. 275(3), 1051–1068 (2004)

    Article  Google Scholar 

  19. Benosman, M., Le Vey, G., Lanari, L., De Luca, A.: Rest-to-rest motion for planar multi-link flexible manipulator through backward recursion. Dyn. Syst. Meas. Control 126(1), 115–123 (2004)

    Article  Google Scholar 

  20. Szyszkowski, W., Youck, D., De Luca, A.: Optimal control of a flexible manipulator. J. Comput. Struct. 47(4), 801–813 (1993)

    Article  MATH  Google Scholar 

  21. Sarkar, P.K., Yamamoto, M., Mohri, A.: On the trajectory planning of a planar elastic manipulator under gravity. IEEE Trans. Robot. Autom. 15(2), 357–362 (1999)

    Article  Google Scholar 

  22. Kojima, H., Kibe, T.: Optimal trajectory planning of a two link flexible robot arm based on genetic algorithm for residual vibration reduction. IEEE Int. Conf. Intell. Robot. Syst. 4(1), 2276–2281 (2001)

    Google Scholar 

  23. Sharf, I.: Geometrically non-linear beam element for dynamics of multibody systems. Int. J. Numer. Methods Eng. 39(5), 763–783 (1996)

    Article  MATH  Google Scholar 

  24. Shampine, L.F., Reichelt, M.W., Kierzenka, J.: Solving boundary value problems for ordinary differential equations in Matlab with bvp4c. Available from: http://www.mathworks.com/bvptutorial (2000)

  25. Wu, S.C., Haug, E.J.: Geometric non-linear substructuring for dynamic of flexible mechanical systems. Int. J. Numer. Methods Eng. 26(10), 2211–2226 (1988)

    Article  MATH  Google Scholar 

  26. Ramos, F., Feliu, V., Payo, I.: Design of trajectories with physical constraints for very lightweight single link flexible arms. J. Vib. Control 14(8), 1091–1110 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. R. Heidari.

Additional information

Part of this research was sponsored by the Spanish Government Research Program with the project DPI2012-37062-C02-01 (MINECO) and by the European Social Fund.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heidari, H.R., Korayem, M.H., Haghpanahi, M. et al. Optimal Trajectory Planning for Flexible Link Manipulators with Large Deflection Using a New Displacements Approach. J Intell Robot Syst 72, 287–300 (2013). https://doi.org/10.1007/s10846-012-9807-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-012-9807-1

Keywords

Navigation