Skip to main content

Advertisement

Log in

RETRACTED ARTICLE: Methodologies to Optimize Automated Guided Vehicle Scheduling and Routing Problems: A Review Study

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

This article was retracted on 12 July 2023

This article has been updated

Abstract

Automated guided vehicles (AGVs) are used as a material handling device in flexible manufacturing systems. Traditionally, AGVs were mostly used at manufacturing systems, but currently other applications of AGVs are extensively developed in other areas, such as warehouses, container terminals and transportation systems. This paper discusses literature related to different methodologies to optimize AGV systems for the two significant problems of scheduling and routing at manufacturing, distribution, transshipment and transportation systems. We categorized the methodologies into mathematical methods (exact and heuristics), simulation studies, meta-heuristic techniques and artificial intelligent based approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Aized, T.: Modelling and performance maximization of an integrated automated guided vehicle system using coloured petri net and response surface methods. Comput. Ind. Eng. 57, 822–831 (2009)

    Article  Google Scholar 

  2. Ashayeri, J., Gelders, L.F.: Interactive GPSS-PC program generator for automated material handling systems. Int. J. Adv. Manuf. Technol. 2(4), 63–77 (1987)

    Article  Google Scholar 

  3. Baita, F., Pesenti, R., Ukovich, W., Favaretto, D.: A comparison of different solution approaches to the vehicle scheduling problem in a practical case. Comput. Oper. Res. 27, 1249–1269 (2000)

    Article  MATH  Google Scholar 

  4. Bing, W.X.: The application of analytic process of resource in an AGV scheduling. Comput. Ind. Eng. 35(1–2), 169–172 (1998)

    Article  Google Scholar 

  5. Blair, E.L., Charnsethikul, P., Vasques, A.: Optimal routing of driverless vehicles in a flexible material handling system. Mater. Flow 4, 73–83 (1987)

    Google Scholar 

  6. Bodin, L.D., Golden, B.L., Assad, A.A., Ball, M.O.: Routing and scheduling of vehicles and crews: the state of the art. Comput. Oper. Res. 10(2), 63–211 (1983)

    Article  MathSciNet  Google Scholar 

  7. Bookbinder, J.H., Krik, M.D.: Lane selection in an AGV based asynchronous parallel assembly line. Comput. Ind. Eng. 32(4), 927–938 (1997)

    Article  Google Scholar 

  8. Bozer, Y.A., Srinivasan, M.M.: Tandem AGV systems: a partitioning algorithm and performance comparison with conventional AGV systems. Eur. J. Oper. Res. 63, 173–191 (1992)

    Article  Google Scholar 

  9. Bramel, J., Simchi-Levi, D.: On the effectiveness of set covering formulations for the vehicle routing problem with time windows. Oper. Res. 45(2), 295–301 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, M.: A mathematical programming model for AGVs planning and control in manufacturing systems. Comput. Ind. Eng. 30(4), 647–658 (1996)

    Article  Google Scholar 

  11. Cordeau, J.-F., Desaulniers, G., Desrosiers, J., Solomon, M.M., Soumis, F.: VRP with time windows. In: Toth, P., Vigo, D. (eds.) The Vehicle Routing Problem. SIAM Monographs on Discrete Mathematics and Applications, pp. 157–193 (2002)

  12. Corréa, A.I., Langevin, A., Rousseau, L.-M.: Scheduling and routing of automated guided vehicles: a hybrid approach. Comput. Oper. Res. 34, 1688–1707 (2007)

    Article  MATH  Google Scholar 

  13. Dai, J.B., Lee, N.K.S., Cheung, W.S.: Performance analysis of flexible material handling systems for the apparel industry. Int. J. Adv. Manuf. Technol. 44, 1219–1229 (2009)

    Article  Google Scholar 

  14. Desaulniers, G., Langevin, A., Riopel, D., Villeneuve, B.: Dispatching and conflict-free routing of automated guided vehicles: an exact approach. Int. J. Flex. Manuf. Syst. 15, 309–331 (2003)

    Article  Google Scholar 

  15. Desrochers, M., Desrosiers, J., Solomon, M.: A new optimization algorithm for the vehicle routing problem with time windows. Oper. Res. 40(2), 342–354 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  16. Desrochers, M., Lenstra, J.K., Savelsbergh, M.W.P., Soumis, F.: Vehicle routing with time windows: optimization and approximation. In: Golden, B.L., Assad, A.A. (eds.) Vehicle Routing: Methods and Studies. Studies in Management Science and Systems, pp. 65–84 (1988)

  17. Dhouib, K., Kadi, D.A.: Expert system for AGV managing in bidirectional networks: KADS methodology based approach. Int. J. Prod. Econ. 33, 31–43 (1994)

    Article  Google Scholar 

  18. Dumas, Y., Desrosiers, J., Soumis, F.: The pickup and delivery problem with time windows. Eur. J. Oper. Res. 54, 7–22 (1991)

    Article  MATH  Google Scholar 

  19. Ebben, M., Van der Heijden, M., Hurink, J., Schutten, M.: Modeling of capacitated transportation systems for integral scheduling. OR Spectrum 26, 263–282 (2004)

    Article  MATH  Google Scholar 

  20. Fazlollahtabar, H., Mahdavi-Amiri, N.: Producer’s behavior analysis in an uncertain bicriteria AGV-based flexible jobshop manufacturing system with expert system. Int. J. Adv. Manuf. Technol. 65(9–12), 1605–1618 (2013). doi:10.1007/s00170-012-4283-0

    Article  Google Scholar 

  21. Fazlollahtabar, H., Mahdavi-Amiri, N.: An optimal path in a bi-criteria AGV-based flexible jobshop manufacturing system having uncertain parameters. Int. J. Ind. Sys. Eng. 13(1), 27–55 (2013)

    Google Scholar 

  22. Fazlollahtabar, H., Eshaghzadeh, A., Hajmohammadi, H., Taheri-Ahangar, A.: A Monte Carlo simulation to estimate TAGV production time in a stochastic flexible automated manufacturing system: a case study. Int. J. Ind. Syst. Eng. 12(3), 243–258 (2012)

    Google Scholar 

  23. Fazlollahtabar, H., Rezaie, B., Kalantari, H.: Mathematical programming approach to optimize material flow in an AGV-based flexible jobshop manufacturing system with performance analysis. Int. J. Adv. Manuf. Technol. 51(9–12), 1149–1158 (2010)

    Article  Google Scholar 

  24. Fisher, M.: Vehicle routing. In: Ball, M.O., Magnanti, C.L., Monma, C.L., Nemhauser, G.L. (eds.) Network Routing, pp. 1–33. Elsevier, Amsterdam (1995)

  25. Fisher, M.L., Jörnsten, K.O., Madsen, O.B.G.: Vehicle routing with time windows: two optimization algorithms. Oper. Res. 45(3), 488–492 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gamberi, M., Manzini, R., Regattieri, A.: An new approach for the automatic analysis and control of material handling systems: integrated layout flow analysis (ILFA). Int. J. Adv. Manuf. Technol. 41, 156–167 (2009)

    Article  Google Scholar 

  27. Gans, N., Van Ryzin, G.: Dynamic vehicle dispatching: optimal heavy traffic performance and practical insights. Oper. Res. 47(5), 675–692 (1999)

    Article  MATH  Google Scholar 

  28. Gaur, D.R., Gupta, A., Krishnamurti, R.: A 5/3-approximation algorithm for scheduling vehicles on a path with release and handling times. Inf. Process. Lett. 86, 87–91 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  29. Gendreau, M., Guertin, F., Potvin, J.Y., Taillard, É.: Parallel tabu search for real-time vehicle routing and dispatching. Transp. Sci. 33(4), 381–390 (1999)

    Article  MATH  Google Scholar 

  30. Gotting, H.H.: Automation and steering of vehicles in ports. Port Technol. Int. 10, 101–111 (2000)

    Google Scholar 

  31. Guan, X., Dai, X.: Deadlock-free multi-attribute dispatching method for AGV systems. Int. J. Adv. Manuf. Technol. 45, 603–615 (2009)

    Article  Google Scholar 

  32. Haefner, L.E., Bieschke, M.S.: ITS opportunities in port operations. Transportation Conference Proceedings, pp. 131–134 (1998)

  33. Han, M.H., McGinnis, L.F.: Control of material handling transporter in automated manufacturing. IIE Trans. 21(2), 184–190 (1989)

    Article  Google Scholar 

  34. Hartmann, S.: A general framework for scheduling equipment and manpower at container terminals. OR Spectrum 26, 51–74 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  35. Hsieh, S., Lin, K.: Building AGV traffic-control models with place-transition nets. Int. J. Adv. Manuf. Technol. 6, 346–363 (1991)

    Article  Google Scholar 

  36. Ilic, O.: Analysis of the number of automated guided vehicles required in flexible manufacturing systems. Int. J. Adv. Manuf. Technol. 9, 382–389 (1994)

    Article  Google Scholar 

  37. Jawahar, N., Aravindan, P., Ponnambalam, S.G., Suresht, R.K.: AGV Schedule integrated with production in flexible manufacturing systems. Int. J. Adv. Manuf. Technol. 14, 428–440 (1998)

    Article  Google Scholar 

  38. Jerald, J., Asokan, P., Prabaharan, G., Saravanan, R.: Scheduling optimization of flexible manufacturing systems using particle swarm optimization algorithm. Int. J. Adv. Manuf. Technol. 25, 964–971 (2005)

    Article  Google Scholar 

  39. Jerald, J., Asokan, P., Saravanan, R., Delphin Carolina Rani, A.: Simultaneous scheduling of parts and automated guided vehicles in an FMS environment using adaptive genetic algorithm. Int. J. Adv. Manuf. Technol. 29, 584–589 (2006)

    Article  Google Scholar 

  40. Joseph, O.A., Sridharan, R.: Effects of routing flexibility, sequencing flexibility and scheduling decision rules on the performance of a flexible manufacturing system. Int. J. Adv. Manuf. Technol. 56, 291–306 (2011)

    Article  Google Scholar 

  41. Joseph, O.A., Sridharan, R.: Evaluation of routing flexibility of a flexible manufacturing system using simulation modelling and analysis. Int. J. Adv. Manuf. Technol. 56, 273–289 (2011)

    Article  Google Scholar 

  42. Kasilingam, R.G., Gobal, S.L.: Vehicle requirements model for automated guided vehicle systems. Int. J. Adv. Manuf. Technol. 12, 276–279 (1996)

    Article  Google Scholar 

  43. Katz, Z., Bright, G.: A guidance technique for an automated guided vehicle. Int. J. Adv. Manuf. Technol. 7, 198–202 (1992)

    Article  Google Scholar 

  44. Kelly, J.P., Xu, J.: A set-partitioning-based heuristic for the vehicle routing problem. J. Comput. 11(2), 161–172 (1999)

    MathSciNet  MATH  Google Scholar 

  45. Kim, B., Shin, J., Chae, J.: Simple blocking prevention for bay type path-based automated material handling systems. Int. J. Adv. Manuf. Technol. 44, 809–816 (2009)

    Article  Google Scholar 

  46. Kim, C.W., Tanchoco, J.M.A.: Conflict-free shortesttime bidirectional AGV routing. Int. J. Prod. Res. 29(12), 2377–2391 (1991)

    Article  MATH  Google Scholar 

  47. Kim, K., Jae, M.: An object-oriented simulation and extension for tandem AGV systems. Int. J. Adv. Manuf. Technol. 22, 441–455 (2003)

    Article  Google Scholar 

  48. Kim, K.S., Chung, B.D., Jae, M.: A design for a tandem AGVS with multi-load AGVs. Int. J. Adv. Manuf. Technol. 22, 744–752 (2003)

    Article  Google Scholar 

  49. Kizil, M., Ozbayrak, M., Papadopoulou, T.C.: Evaluation of dispatching rules for cellular manufacturing. Int. J. Adv. Manuf. Technol. 28, 985–992 (2006)

    Article  Google Scholar 

  50. Kohl, N., Madsen, O.B.G.: An optimization algorithm for the vehicle routing problem with time windows based on Lagrangian relaxation. Oper. Res. 45(3), 395–406 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  51. Kohl, N., Desrosiers, J., Madsen, O.B.G., Solomon, M.M., Soumis, F.: 2-path cuts for the vehicle routing problem with time windows. Transp. Sci. 33(1), 101–116 (1999)

    Article  MATH  Google Scholar 

  52. Kolen, A.W.J., Rinnooy Kan, A.H.G., Trienekens, H.W.J.M.: Vehicle routing with time windows. Oper. Res. 35(2), 266–273 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  53. Krishnamurthy, N.N., Batta, R., Karwan, M.H.: Developing conflict-free routes for automated guided vehicles. Oper. Res. 41(6), 1077–1090 (1993)

    Article  MATH  Google Scholar 

  54. Kuttolamadom, M., Mehrabi, M.G., Weaver, J.: Design of a stable controller for accurate path tracking of automated guided vehicles systems. Int. J. Adv. Manuf. Technol. 50, 1183–1188 (2010)

    Article  Google Scholar 

  55. Langevin, A., Lauzon, D., Riopel, D.: Dispatching, routing and scheduling of two automated guided vehicles in a flexible manufacturing system. Int. J. Flex. Manuf. Syst. 8, 246–262 (1996)

    Article  Google Scholar 

  56. Laporte, G.: The vehicle routing problem: An overview of exact and approximate algorithms. Eur. J. Oper. Res. 59, 345–358 (1992)

    Article  MATH  Google Scholar 

  57. Lee, J.H., Lee, B.H., Choi, M.H.: A real-time traffic control scheme of multiple AGV systems for collision free minimum time motion: a routing table approach. IEEE Trans. Syst. Man. Cybern. Syst. Hum. 28, 347–58 (1998)

    Article  Google Scholar 

  58. Levitina, G., Abezgaouz, R.: Optimal routing of multiple-load AGV subject to LIFO loading constraints. Comput. Oper. Res. 30, 397–410 (2003)

    Article  MATH  Google Scholar 

  59. Maughan, F.G., Lewis, H.J.: AGV controlled FMS. Int. J. Prod. Res. 38(17), 4445–4453 (2000)

    Article  MATH  Google Scholar 

  60. Meersmans, P.J.M.: Optimization of Container Handling Systems. Ph.D. Thesis, Tinbergen Institute 271. Erasmus University Rotterdam (2002)

  61. Meersmans, P.J.M., Wagelmans, A.P.M.: Effective algorithms for integrated scheduling of handling equipment at automated container terminals. ERIM Report Series Research in Management ERS-2001-36-LIS. Erasmus University Rotterdam (2001)

  62. Muller, T.: Automated Guided Vehicles. IFS (Publications) Ltd./Springer-Verlag, UK/Berlin (1983)

    Google Scholar 

  63. Narasimhan, R., Batta, R., Karwan, M.H.: Routing automated guided vehicles in the presence of interruptions. Int. J. Prod. Res. 37(3), 653–681 (1999)

    Article  MATH  Google Scholar 

  64. Nishi, T., Hiranaka, Y., Grossmann, I.E.: A bilevel decomposition algorithm for simultaneous production scheduling and conflict-free routing for automated guided vehicles. Comput. Oper. Res. 38, 876–888 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  65. Oboth, C., Batta, R., Karwan, M.: Dynamic conflict-free routing of automated guided vehicles. Int. J. Prod. Res. 37(9), 2003–2030 (1999)

    Article  MATH  Google Scholar 

  66. Psaraftis, H.N.: Dynamic vehicle routing problems. In: Golden, B.L., Assad, A.A. (eds.) Vehicle Routing: Methods and Studies. Studies in Management Science and Systems, pp. 223–248 (1988)

  67. Qiu, L., Hsu, W.J.: A bi-directional path layout for conflict-free routing of AGVs. Int. J. Prod. Res. 39(1), 2177–2195 (2001)

    Article  Google Scholar 

  68. Rajotia, S., Shanker, K., Batra, J.L.: A semi-dynamic time window constrained routing strategy in an AGV system. Int. J. Prod. Res. 36(1), 35–50 ((1998a))

    Article  MATH  Google Scholar 

  69. Rajotia, S., Shanker, K., Batra, J.L.: A Semi-dynamic window constrained routing strategy in an AGV system. Int. J. Prod. Res. 36, 35–50 (1998)

    Article  MATH  Google Scholar 

  70. Rashidi, H., Tsang, E.P.K.: A complete and an incomplete algorithm for automated guided vehicle scheduling in container terminals. Comp. Math. Appl. 61, 630–641 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  71. Reddy, B.S.P., Rao, C.S.P.: A hybrid multi-objective GA for simultaneous scheduling of machines and AGVs in FMS. Int. J. Adv. Manuf. Technol. 31, 602–613 (2006)

    Article  Google Scholar 

  72. Sabuncuoglu, I.: A study of scheduling rules of flexible manufacturing systems: a simulation approach. Int. J. Prod. Res. 36(2), 527–546 (1998)

    Article  MATH  Google Scholar 

  73. Salehipour, A., Kazemipoor, H., Moslemi Naeini, L.: Locating workstations in tandem automated guided vehicle systems. Int. J. Adv. Manuf. Technol. 52, 321–328 (2011)

    Article  Google Scholar 

  74. Sanchez-Salmeron, A.J., Lopez-Tarazon, R., Guzman-Diana, R., Ricolfe-Viala, C.: An inter-machine material handling system for micro-manufacturing based on using a standard carrier. Int. J. Adv. Manuf. Technol. 47, 937–943 (2010)

    Article  Google Scholar 

  75. Saravana Sankar, S., Ponnambalam, S.G., Gurumarimuthu, M.: Scheduling flexible manufacturing systems using parallelization of multi-objective evolutionary algorithms. Int. J. Adv. Manuf. Technol. 30, 279–285 (2006)

    Article  Google Scholar 

  76. Satish Kumar, M.V., Janardhana, R., Rao, C.S.P.: Simultaneous scheduling of machines and vehicles in an FMS environment with alternative routing. Int. J. Adv. Manuf. Technol. 53, 339–351 (2011)

    Article  Google Scholar 

  77. Savelsbergh, M., Sol, M.: Drive: dynamic routing of independent vehicles. Oper. Res. 46(4), 474–490 (1998)

    Article  MATH  Google Scholar 

  78. Savelsbergh, M.W.P., Sol, M.: The general pickup and delivery problem. Transp. Sci. 29(1), 17–29 (1995)

    Article  MATH  Google Scholar 

  79. Seifert, R.W., Kay, M.G., Wilson, J.R.: Evaluation of AGV routing strategies using hierarchical simulation. Int. J. Prod. Res. 36(7), 1961–1976 (1998)

    Article  MATH  Google Scholar 

  80. Shirazi, B., Fazlollahtabar, H., Mahdavi, I.: A six sigma based multi-objective ptimization for machine grouping control in flexible cellular manufacturing systems with guide-path flexibility. Adv. Eng. Softw. 41(6), 865–873 (2010)

    Article  MATH  Google Scholar 

  81. Singh, S.P., Tiwari, M.K.: Object oriented modelling and development of a dispatching algorithm for automated guided vehicles. Int. J. Adv. Manuf. Technol. 23, 682–695 (2004)

    Article  Google Scholar 

  82. Singh, S.P., Tiwari, M.K.: Intelligent agent framework to determine the optimal conflict-free path for an automated guided vehicles system. Int. J. Prod. Res. 40(16), 4195–4223 (2002)

    Article  MATH  Google Scholar 

  83. Sinriech, D., Kotlarski, J.: A dynamic scheduling algorithm for a multiple-load-carrier system. Int. J. Prod. Res. 40(5), 1065–1080 (2002)

    Article  MATH  Google Scholar 

  84. Sinriech, D., Palni, L.: Scheduling pickup and deliveries in a multiple-load discrete carrier environment. IIE Trans. 30, 1035–1047 (1998)

    Article  Google Scholar 

  85. Solomon, M.M.: Algorithms for the vehicle routing and scheduling problems with time window constraints. Oper. Res. 35(2), 254–265 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  86. Solomon, M.M., Desrosiers, J.: Time window constrained routing and scheduling problems. Transp. Sci. 22(1), 1–13 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  87. Solomon, M.M., Baker, E.K., Schaffer, J.R.: Vehicle routing and scheduling problems with time window constraints: efficient implementations of solution improvement procedures. In: Golden, B.L., Assad, A.A. (eds.) Vehicle Routing: Methods and Studies. Studies in Management Science and Systems, pp. 85–104 (1988)

  88. Soylu, M., Özdemirel, N.E., Kayaligil, S.: A selforganizing neural network approach for the single AGV routing problem. Eur. J. Oper. Res. 121, 124–137 (2000)

    Article  MATH  Google Scholar 

  89. Srivastava, S.C., Choudhary, A.K., Kumar, S., Tiwari, M.K.: Development of an intelligent agent-based AGV controller for a flexible manufacturing system. Int. J. Adv. Manuf. Technol. 36, 780–797 (2008)

    Article  Google Scholar 

  90. Subulan, K., Cakmakci, M.: A feasibility study using simulation-based optimization and Taguchi experimental design method for material handling—transfer system in the automobile industry. Int. J. Adv. Manuf. Technol. 59, 433–444 (2012)

    Article  Google Scholar 

  91. Taghaboni-Dutta, F., Tanchoco, J.M.A.: Comparison of dynamic routing techniques for automated guided vehicle system. Int. J. Prod. Res. 33(10), 2653–2669 (1995)

    Article  MATH  Google Scholar 

  92. Tavakkoli-Moghaddam, R., Aryanezhad, M.B., Kazemipoor, H., Salehipour, A.: Partitioning machines in tandem AGV systems based on “balanced flow strategy” by simulated annealing. Int. J. Adv. Manuf. Technol. 38, 355–366 (2008)

    Article  Google Scholar 

  93. Um, I., Cheon, H., Lee, H.: The simulation design and analysis of a flexible manufacturing system with automated guided vehicle system. J. Manuf. Syst. 28, 115–122 (2009)

    Article  Google Scholar 

  94. Van der Heijden, M.C., Van Harten, A., Ebben, M.J.R., Saanen, Y.A., Valentin, E.C., Verbraeck, A.: Using simulation to design an automated underground system for transporting freight around Schiphol airport. Interfaces 32(4), 1–19 (2002a)

    Article  Google Scholar 

  95. Van der Heijden, M., Ebben, M., Gademann, N., Van Harten, A.: Scheduling vehicles in automated transportation systems. OR Spectrum 24, 31–58 (2002b)

    Article  MATH  Google Scholar 

  96. Veeravalli, B., Rajesh, G., Viswanadham, N.: Design and analysis of optimal material distribution policies in flexible manufacturing systems using a single AGV. Int. J. Prod. Res. 40(12), 2937–2954 (2002)

    Article  MATH  Google Scholar 

  97. Vis, I.F.A.: Survey of research in the design and control of automated guided vehicle systems. Eur. J. Oper. Res. 170, 677–709 (2006)

    Article  MATH  Google Scholar 

  98. Vis, I.F.A., Harika, I.: Comparison of vehicle types at an automated container terminal. OR Spectrum 26, 117–143 (2004)

    Article  MATH  Google Scholar 

  99. Wu, K.H., Hsing, Chen, C.H., Ko, J.: Path planning and prototype design of an AGV. Math. Comput. Model. 30, 147–167 (1999)

  100. Yahyaei, M., Jam, J.E., Hosnavi, R.: Controlling the navigation of automatic guided vehicle (AGV) using integrated fuzzy logic controller with programmable logic controller (IFLPLC). Int. J. Adv. Manuf. Technol. 47, 795– 807 (2010)

    Article  Google Scholar 

  101. Yang, C.H., Choi, Y.S., Ha, T.Y.: Simulation-based performance evaluation of transport vehicles at automated container terminals. OR Spectrum 26, 149–170 (2004)

    Article  MATH  Google Scholar 

  102. Yoo, J., Sim, E., Cao, C., Park, J.: An algorithm for deadlock avoidance in an AGV System. Int. J. Manuf. Technol. 26, 659–668 (2005)

    Article  Google Scholar 

  103. Zanjirani Farahani, R., Laporte, G., Miandoabchi, E., Bina, S.: Designing efficient methods for the tandem AGV network design problem using tabu search and genetic algorithm. Int. J. Adv. Manuf. Technol. 36, 996–1009 (2008)

    Article  Google Scholar 

  104. Zaremba, M.B., Obuchowicz, A., Banaszak, Z.A., Jedrzejek, K.J.: A max-algebra approach to the robust distributed control of repetitive AGV systems. Int. J. Prod. Res. 35(10), 2667–2687 (1997)

    Article  MATH  Google Scholar 

  105. Zeng, L., Wang, H.P., Jin, S.: Conflict detection of automated guided vehicles: a petri net approach. Int. J. Prod. Res. 29(5), 865–879 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamed Fazlollahtabar.

Additional information

This article has been retracted. Please see the retraction notice for more detail:https://doi.org/10.1007/s10846-023-01923-1

About this article

Cite this article

Fazlollahtabar, H., Saidi-Mehrabad, M. RETRACTED ARTICLE: Methodologies to Optimize Automated Guided Vehicle Scheduling and Routing Problems: A Review Study. J Intell Robot Syst 77, 525–545 (2015). https://doi.org/10.1007/s10846-013-0003-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-013-0003-8

Keywords

Navigation