Skip to main content
Log in

Adaptive Position Tracking System and Force Control Strategy for Mobile Robot Manipulators Using Fuzzy Wavelet Neural Networks

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

In this paper, we propose an adaptive position tracking system and a force control strategy for nonholonomic mobile robot manipulators, which incorporate the merits of Fuzzy Wavelet Neural Networks (FWNNs). In general, it is not easy to adopt a model-based method to achieve this control object due to the uncertainties of mobile robot manipulators control system, such as unknown dynamics, disturbances and parameter variations. To solve this problem, an adaptive FWNNs control scheme with the online learning ability is utilized to approximate the unknown dynamics without the requirement of prior system information. In addition, an adaptive robust compensator is proposed to eliminate uncertainties that consist of approximation errors, disturbances, optimal parameters and higher order terms in Taylor series. According to adaptive position tracking control design, an adaptive robust control strategy is also considered for nonholonomic constraint force. The design of adaptive online learning algorithms is derived using Lyapunov stability theorem. Therefore, the proposed controllers prove that they not only can guarantee the stability of mobile robot manipulators control system but also guarantee tracking performance. The effectiveness and robustness of the proposed method are demonstrated by comparing simulations and experimental results that are implemented in an indoor cleaning crawler-type mobile robot manipulators system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Yamamoto, Y., Yun, X.: Effect of the dynamic interaction on coordinated control of mobile manipulators. IEEE Trans. Robot. Autom. 12(5), 816–824 (1996)

    Article  Google Scholar 

  2. Khatib, O.: Mobile manipulation: the robotic assistant. Robot. Auton. Syst. 26(2–3), 157–183 (1999)

    Google Scholar 

  3. Watanabe, K., Sato, K., Izumi, K., Kunitake, Y.: Analysis and control for an omnidirectional mobile manipualator. J. Intell. Robot Syst. 27(1–2), 3–20 (2000)

    Article  MATH  Google Scholar 

  4. Tan, J., Xi, N., Wang, Y.: Integrated task planning and control for mobile manipulators. Int. J. Robot. Res. 22(5), 337–354 (2003)

    Article  Google Scholar 

  5. Inoue, F., Muralami, T., Ihnishi, K.: A motion control of mobile manipulator with external force. IEEE/ASME Trans. Mechatronics 6(2), 137–142 (2001)

    Article  Google Scholar 

  6. Tsai, C.C., Cheng, M.B., Lin, S.C.: Dynamic modeling and tracking control of a nonholonomic wheeled mobile manipulator with dual arms. J. Intell. Robot Syst. 47(4), 317–340 (2006)

    Article  Google Scholar 

  7. Dong, W.: On trajectory and force tracking control of constrained mobile manipulators with parameter uncertainty. Automatica 38(9), 1475–1484 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. Li, Z., Ge, S.S., Ming, A.: Adaptive robust motion/force control of holonomic-constrained non-holonomic mobile manipulators. IEEE Trans. Syst. Man Cybern. Part B. Cybern. 37(3), 607–616 (2007)

    Article  Google Scholar 

  9. Li, Z., Ge, S.S., Adams, M., Wijesoma, W.S.: Adaptive robust output-feedback motion/force control of electrically driven nonholonomic mobile manipulators. IEEE Trans. Control Syst. Technol. 16(6), 1308–1315 (2008)

    Article  Google Scholar 

  10. Li, Z., Kang, Y.: Dynamic coupling switching control incorporating support vector machines for wheeled mobile manipulators with hybrid joints. Automatica 46(5), 1337–1352 (2010)

    MathSciNet  Google Scholar 

  11. Li, Z., Yang Y, Li J: Adaptive motion/force control of mobile under actuated manipulators with dynamics uncertainties by dynamic coupling and output feedback. IEEE Trans. Control. Syst. Technol. 18(5), 1068–1079 (2010)

    Article  Google Scholar 

  12. Li, Z., Li, J., Kuang, Y.: Adaptive robust coordinated control of multiple mobile manipulators interacting with rigid environments. Automatica 46(12), 2028–2034 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  13. Andaluz, V., Roberti, F., Toibero, J.M., Carelli, R.: Adaptive unified motion control of mobile manipulators. Control. Eng. Pract. 20(12), 1337–1352 (2012)

    Article  Google Scholar 

  14. Lewis, F.L., Jagannathan, S., Yesildirek, A.: Neural Network Control of Robot Manipulators and Nonlinear Systems. New York Taylor and Francis (1998)

  15. Omidvar, O., Elliott, D.L.: Neural Systems for Control. New York Academic (1997)

  16. Jang, J.S.R., Sun, C.T., Mizutani, E.: Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence. New Jersey Prentice-Hall (1997)

  17. Lewis, F.L., Liu, K., Yesildirek, A.: Neural net robot controller with guaranteed tracking performance. IEEE Trans. Neural Netw. 6(3), 703–713 (1996)

    Article  Google Scholar 

  18. Lewis, F.L., Liu, K., Yesildirek, A., Liu, K.: Multilayer neural-net robot controller with guaranteed tracking performance. IEEE Trans. Neural Netw. 7(2), 388–399 (1996)

    Article  Google Scholar 

  19. Kim, Y.H., Lewis F.L.: Neural network output feedback control of robot manipulators. IEEE Trans. Robot. Autom. 15(2), 301–309 (1999)

    Article  Google Scholar 

  20. Wang, L., Chai, T., Zhai, L.: Neural-network-based terminal sliding-mode control of robotic manipulators including actuator dynamics. IEEE Trans. Ind. Electron. 56(9), 3296–3304 (2009)

    Article  Google Scholar 

  21. Lin, S., Goldenberg, A.A.: Neural-network control of mobile manipulators. IEEE Trans. Neural Netw. 12(5), 1121–1133 (2001)

    Article  Google Scholar 

  22. Lee, C.Y., Eom, T.D., Lee, J.J.: Neuro-adaptive control of mobile manipulators base on compensation of approximation error. IET Elect. Lett. 38(16), 935–936 (2002)

    Article  Google Scholar 

  23. Li, Z., Yang, C., Gu, J.: Neuro-adaptive compliant force/motion control for uncertain constrained wheeled mobile manipulator. Int. J. Robot. Autom. 22(3), 206–214 (2007)

    Google Scholar 

  24. Xu, D., Zhao, D., Yi, J., Tan, X.: Trajectory tracking control of omidirectional wheeled mobile manipulators: robust neural network-based sliding mode approach. IEEE Trans. Syst. Man Cybern. Part B. Cybern. 39(3), 788–799 (2009)

    Article  Google Scholar 

  25. Wai, R.J., Chen, P.C.: Robust neural-fuzzy-network control for robot manipulator including actuator dynamics. IEEE Trans. Ind. Electron. 53(4), 1328–1349 (2006)

    Article  Google Scholar 

  26. Chen, C.S.: Dynamic structure neural-fuzzy networks for robust adaptive control of robot manipulators. IEEE Trans. Ind. Electron. 55(9), 3042–3414 (2008)

    Article  Google Scholar 

  27. Theodoridis, D.C., Boutalis, Y.S., Christodoulou, M.A.: A new adaptive neuro-fuzzy controller for trajectory tracking of robot manipulators. Int. J. Robot. Autom. 26(1), 64–75 (2011)

    MATH  Google Scholar 

  28. Park, S.H., Han, S.I.: Robust-tracking control for robot manipulator with deadzone and friction using backstepping and RFNN controller. IET Control. Theory Appl. 5(12), 1397–1417 (2011)

    Article  MathSciNet  Google Scholar 

  29. Mbede, J.B., Ele, P., Abia, C., Toure, Y., Graefe, V., Ma, S.: Intelligent mobile manipulator navigation using adaptive neuro-fuzzy systems. Inform. Sci. 171(4), 447–474 (2005)

    Article  MATH  Google Scholar 

  30. Zhang, Q., Benveniste, A.: Wavelet networks. IEEE Trans. Neural Netw 3(6), 889–898 (1992)

    Article  Google Scholar 

  31. Delyon, B., Juditsky, A., Benveniste, A.: Accuracy analysis for Wavelet approximations. IEEE Trans. Neural Netw. 6(2), 332–348 (1995)

    Article  Google Scholar 

  32. Zhang, Q.: Using wavelet networks in nonparametric estimation. IEEE Trans. Neural Netw. 8(2), 227–236 (1997)

    Article  Google Scholar 

  33. Zhang, J., Walter, G.G., Miao, Y., Lee, W.NW.: Wavelet neural networks for function learning. IEEE Trans. Sig. Process. 43(6), 1485–1497 (1995)

    Article  Google Scholar 

  34. Jin, N., Liu, D.: Wavelet basic function neural networks for sequential learning. IEEE Trans. Neural Netw. 19(3), 523–528 (2008)

    Article  Google Scholar 

  35. Wai, R.J., Chang, J.M.: Implementation of robust wavelet-neural-network sliding-mode control for induction servo motor drive. IEEE Trans. Ind. Electron. 50(6), 1317–1334 (2003)

    Article  Google Scholar 

  36. Yoo, S.J., Park, J.B., Choi, Y.H.: Adaptive dynamic surface control of flexible-joint robots using self-recurrent wavelet neural networks. IEEE Trans. Syst. Man Cybern. Part B. Cybern. 36(6), 1342–1355 (2006)

    Article  MathSciNet  Google Scholar 

  37. Lin, F.J., Park, H.J., Huang, P.K.: Adaptive wavelet neural network control with hysteresis estimation for piezo-position mechanism. IEEE Trans. Neural Netw. 17(2), 432–444 (2006)

    Article  Google Scholar 

  38. Yoo, S.J., Choi, Y.H., Park, J.B.: Generalized predictive control based on self-recurrent wavelet neural network for stable path tracking of mobile robots: adaptive learning rates approach. IEEE Trans. Cir. Syst. 53(6), 1381–1394 (2006)

    Article  MathSciNet  Google Scholar 

  39. Hu, C.H.: Design and application of stable predictive controller using recurrent wavelet neural networks. IEEE Trans. Ind. Electron. 56(9), 3733–3742 (2009)

    Article  Google Scholar 

  40. Ho, D.W.C., Zhang, P.A., Xu, J.H.: Fuzzy wavelet networks for function learning. IEEE Trans. Fuzzy Syst. 9(1), 200–211 (2001)

    Article  Google Scholar 

  41. Abiyev, R.H., Kaynak, O.: Fuzzy wavelet neural networks for identification and control of dynamic plants-A novel structure and a comparative study. IEEE Trans. Ind. Electron. 55(8), 3133–3140 (2008)

    Article  Google Scholar 

  42. Yilmaz, S., Oysal, Y.: Fuzzy wavelet neural network models for prediction and identification of dynamical systems. IEEE Trans. Neural Netw. 21(10), 1599–1609 (2010)

    Article  Google Scholar 

  43. Lu, C.H.: Wavelet fuzzy neural networks model for identification and predictive control of dynamical systems. IEEE Trans. Ind. Electron. 58(7), 3046–3058 (2011)

    Article  Google Scholar 

  44. Hsu, C.F.: Adaptive fuzzy wavelet neural controller design for chaos synchronization. Expert Syst. Appl. 38(8), 10475–10483 (2011)

    Article  Google Scholar 

  45. Davanipoor, M., Zekri, M., Sheikholeslam F.: Fuzzy wavelet neural network with an accelerated hybrid learning algorithm. IEEE Trans. Fuzzy Syst. 20(3), 463–469 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mai Thang Long.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Long, M.T., Nan, W.Y. Adaptive Position Tracking System and Force Control Strategy for Mobile Robot Manipulators Using Fuzzy Wavelet Neural Networks. J Intell Robot Syst 79, 175–195 (2015). https://doi.org/10.1007/s10846-013-0006-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-013-0006-5

Keywords