Abstract
In this paper, we propose an adaptive position tracking system and a force control strategy for nonholonomic mobile robot manipulators, which incorporate the merits of Fuzzy Wavelet Neural Networks (FWNNs). In general, it is not easy to adopt a model-based method to achieve this control object due to the uncertainties of mobile robot manipulators control system, such as unknown dynamics, disturbances and parameter variations. To solve this problem, an adaptive FWNNs control scheme with the online learning ability is utilized to approximate the unknown dynamics without the requirement of prior system information. In addition, an adaptive robust compensator is proposed to eliminate uncertainties that consist of approximation errors, disturbances, optimal parameters and higher order terms in Taylor series. According to adaptive position tracking control design, an adaptive robust control strategy is also considered for nonholonomic constraint force. The design of adaptive online learning algorithms is derived using Lyapunov stability theorem. Therefore, the proposed controllers prove that they not only can guarantee the stability of mobile robot manipulators control system but also guarantee tracking performance. The effectiveness and robustness of the proposed method are demonstrated by comparing simulations and experimental results that are implemented in an indoor cleaning crawler-type mobile robot manipulators system.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Yamamoto, Y., Yun, X.: Effect of the dynamic interaction on coordinated control of mobile manipulators. IEEE Trans. Robot. Autom. 12(5), 816–824 (1996)
Khatib, O.: Mobile manipulation: the robotic assistant. Robot. Auton. Syst. 26(2–3), 157–183 (1999)
Watanabe, K., Sato, K., Izumi, K., Kunitake, Y.: Analysis and control for an omnidirectional mobile manipualator. J. Intell. Robot Syst. 27(1–2), 3–20 (2000)
Tan, J., Xi, N., Wang, Y.: Integrated task planning and control for mobile manipulators. Int. J. Robot. Res. 22(5), 337–354 (2003)
Inoue, F., Muralami, T., Ihnishi, K.: A motion control of mobile manipulator with external force. IEEE/ASME Trans. Mechatronics 6(2), 137–142 (2001)
Tsai, C.C., Cheng, M.B., Lin, S.C.: Dynamic modeling and tracking control of a nonholonomic wheeled mobile manipulator with dual arms. J. Intell. Robot Syst. 47(4), 317–340 (2006)
Dong, W.: On trajectory and force tracking control of constrained mobile manipulators with parameter uncertainty. Automatica 38(9), 1475–1484 (2002)
Li, Z., Ge, S.S., Ming, A.: Adaptive robust motion/force control of holonomic-constrained non-holonomic mobile manipulators. IEEE Trans. Syst. Man Cybern. Part B. Cybern. 37(3), 607–616 (2007)
Li, Z., Ge, S.S., Adams, M., Wijesoma, W.S.: Adaptive robust output-feedback motion/force control of electrically driven nonholonomic mobile manipulators. IEEE Trans. Control Syst. Technol. 16(6), 1308–1315 (2008)
Li, Z., Kang, Y.: Dynamic coupling switching control incorporating support vector machines for wheeled mobile manipulators with hybrid joints. Automatica 46(5), 1337–1352 (2010)
Li, Z., Yang Y, Li J: Adaptive motion/force control of mobile under actuated manipulators with dynamics uncertainties by dynamic coupling and output feedback. IEEE Trans. Control. Syst. Technol. 18(5), 1068–1079 (2010)
Li, Z., Li, J., Kuang, Y.: Adaptive robust coordinated control of multiple mobile manipulators interacting with rigid environments. Automatica 46(12), 2028–2034 (2010)
Andaluz, V., Roberti, F., Toibero, J.M., Carelli, R.: Adaptive unified motion control of mobile manipulators. Control. Eng. Pract. 20(12), 1337–1352 (2012)
Lewis, F.L., Jagannathan, S., Yesildirek, A.: Neural Network Control of Robot Manipulators and Nonlinear Systems. New York Taylor and Francis (1998)
Omidvar, O., Elliott, D.L.: Neural Systems for Control. New York Academic (1997)
Jang, J.S.R., Sun, C.T., Mizutani, E.: Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence. New Jersey Prentice-Hall (1997)
Lewis, F.L., Liu, K., Yesildirek, A.: Neural net robot controller with guaranteed tracking performance. IEEE Trans. Neural Netw. 6(3), 703–713 (1996)
Lewis, F.L., Liu, K., Yesildirek, A., Liu, K.: Multilayer neural-net robot controller with guaranteed tracking performance. IEEE Trans. Neural Netw. 7(2), 388–399 (1996)
Kim, Y.H., Lewis F.L.: Neural network output feedback control of robot manipulators. IEEE Trans. Robot. Autom. 15(2), 301–309 (1999)
Wang, L., Chai, T., Zhai, L.: Neural-network-based terminal sliding-mode control of robotic manipulators including actuator dynamics. IEEE Trans. Ind. Electron. 56(9), 3296–3304 (2009)
Lin, S., Goldenberg, A.A.: Neural-network control of mobile manipulators. IEEE Trans. Neural Netw. 12(5), 1121–1133 (2001)
Lee, C.Y., Eom, T.D., Lee, J.J.: Neuro-adaptive control of mobile manipulators base on compensation of approximation error. IET Elect. Lett. 38(16), 935–936 (2002)
Li, Z., Yang, C., Gu, J.: Neuro-adaptive compliant force/motion control for uncertain constrained wheeled mobile manipulator. Int. J. Robot. Autom. 22(3), 206–214 (2007)
Xu, D., Zhao, D., Yi, J., Tan, X.: Trajectory tracking control of omidirectional wheeled mobile manipulators: robust neural network-based sliding mode approach. IEEE Trans. Syst. Man Cybern. Part B. Cybern. 39(3), 788–799 (2009)
Wai, R.J., Chen, P.C.: Robust neural-fuzzy-network control for robot manipulator including actuator dynamics. IEEE Trans. Ind. Electron. 53(4), 1328–1349 (2006)
Chen, C.S.: Dynamic structure neural-fuzzy networks for robust adaptive control of robot manipulators. IEEE Trans. Ind. Electron. 55(9), 3042–3414 (2008)
Theodoridis, D.C., Boutalis, Y.S., Christodoulou, M.A.: A new adaptive neuro-fuzzy controller for trajectory tracking of robot manipulators. Int. J. Robot. Autom. 26(1), 64–75 (2011)
Park, S.H., Han, S.I.: Robust-tracking control for robot manipulator with deadzone and friction using backstepping and RFNN controller. IET Control. Theory Appl. 5(12), 1397–1417 (2011)
Mbede, J.B., Ele, P., Abia, C., Toure, Y., Graefe, V., Ma, S.: Intelligent mobile manipulator navigation using adaptive neuro-fuzzy systems. Inform. Sci. 171(4), 447–474 (2005)
Zhang, Q., Benveniste, A.: Wavelet networks. IEEE Trans. Neural Netw 3(6), 889–898 (1992)
Delyon, B., Juditsky, A., Benveniste, A.: Accuracy analysis for Wavelet approximations. IEEE Trans. Neural Netw. 6(2), 332–348 (1995)
Zhang, Q.: Using wavelet networks in nonparametric estimation. IEEE Trans. Neural Netw. 8(2), 227–236 (1997)
Zhang, J., Walter, G.G., Miao, Y., Lee, W.NW.: Wavelet neural networks for function learning. IEEE Trans. Sig. Process. 43(6), 1485–1497 (1995)
Jin, N., Liu, D.: Wavelet basic function neural networks for sequential learning. IEEE Trans. Neural Netw. 19(3), 523–528 (2008)
Wai, R.J., Chang, J.M.: Implementation of robust wavelet-neural-network sliding-mode control for induction servo motor drive. IEEE Trans. Ind. Electron. 50(6), 1317–1334 (2003)
Yoo, S.J., Park, J.B., Choi, Y.H.: Adaptive dynamic surface control of flexible-joint robots using self-recurrent wavelet neural networks. IEEE Trans. Syst. Man Cybern. Part B. Cybern. 36(6), 1342–1355 (2006)
Lin, F.J., Park, H.J., Huang, P.K.: Adaptive wavelet neural network control with hysteresis estimation for piezo-position mechanism. IEEE Trans. Neural Netw. 17(2), 432–444 (2006)
Yoo, S.J., Choi, Y.H., Park, J.B.: Generalized predictive control based on self-recurrent wavelet neural network for stable path tracking of mobile robots: adaptive learning rates approach. IEEE Trans. Cir. Syst. 53(6), 1381–1394 (2006)
Hu, C.H.: Design and application of stable predictive controller using recurrent wavelet neural networks. IEEE Trans. Ind. Electron. 56(9), 3733–3742 (2009)
Ho, D.W.C., Zhang, P.A., Xu, J.H.: Fuzzy wavelet networks for function learning. IEEE Trans. Fuzzy Syst. 9(1), 200–211 (2001)
Abiyev, R.H., Kaynak, O.: Fuzzy wavelet neural networks for identification and control of dynamic plants-A novel structure and a comparative study. IEEE Trans. Ind. Electron. 55(8), 3133–3140 (2008)
Yilmaz, S., Oysal, Y.: Fuzzy wavelet neural network models for prediction and identification of dynamical systems. IEEE Trans. Neural Netw. 21(10), 1599–1609 (2010)
Lu, C.H.: Wavelet fuzzy neural networks model for identification and predictive control of dynamical systems. IEEE Trans. Ind. Electron. 58(7), 3046–3058 (2011)
Hsu, C.F.: Adaptive fuzzy wavelet neural controller design for chaos synchronization. Expert Syst. Appl. 38(8), 10475–10483 (2011)
Davanipoor, M., Zekri, M., Sheikholeslam F.: Fuzzy wavelet neural network with an accelerated hybrid learning algorithm. IEEE Trans. Fuzzy Syst. 20(3), 463–469 (2012)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Long, M.T., Nan, W.Y. Adaptive Position Tracking System and Force Control Strategy for Mobile Robot Manipulators Using Fuzzy Wavelet Neural Networks. J Intell Robot Syst 79, 175–195 (2015). https://doi.org/10.1007/s10846-013-0006-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10846-013-0006-5