Skip to main content
Log in

Design of Robust Adaptive Neural Switching Controller for Robotic Manipulators with Uncertainty and Disturbances

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

In this paper, we present the robust adaptive neural switching control problem for the application of robotic manipulators with uncertainty and disturbances. The control scheme relaxes the hypothesis that the bounds of external disturbance and approximation errors of neural networks are known. RBF Neural Networks (Radial Basis Function NNs) are adopted to approximate unknown functions of robotic manipulators and an H\(\infty \) controller is designed to enhance system robustness and stabilization due to the existence of the compound disturbance which consists of approximation errors of the neural networks and external disturbance. The adaptive updated laws and the admissible switching signals have been derived from switched multiple Lyapunov function method, so that both system tracking stability and error convergence can be guaranteed in the closed-loop system. Experimental results have demonstrated the improved performance of the proposed control scheme over PD (Proportional Differential) control strategy, which have shown good accuracy of position tracking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Imura, J., Sugie, T., Yoshikawa, T.: Adaptive robust control of robot manipulators-Theory and experiment. IEEE Trans. Robot. Autom. 10(5), 705–710 (1994)

    Article  MathSciNet  Google Scholar 

  2. Alonge, F., Ippolito, F.D., Raimondi, F.M.: Globally convergent adaptive and robust control of robotic manipulators for trajectory tracking. Control. Eng. Pract. 12, 1091–1100 (2004)

    Article  Google Scholar 

  3. Cui, R., Yan, W.: Mutual synchronization of multiple robot manipulators with unknown dynamics. J. Intell. Robot. Syst. 68(2), 105–119 (2012)

    Article  MATH  Google Scholar 

  4. Tomei, P.: Robust adaptive friction compensation for tracking control of robot manipulators. IEEE Trans. Autom. Control 45(11), 2164–2169 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bonilla, I., Reyes, F., Mendoza, M.: A dynamic-compensation approach to impedance control of robot manipulators. J. Intell. Robot. Syst. 63(1), 51–73 (2011)

    Article  MATH  Google Scholar 

  6. Aguilar-Ibáñez, C.F., Martinez García, J.C., Lopez-Soria, A., Rubio, J.J.: On the stabilization of the inverted-cart pendulum using the saturation function. Math. Probl. Eng. 2011, 1–14 (2011)

    Google Scholar 

  7. Rubio, J.J., Figueroa, M., Perez Cruz, J.H., Rumbo, J.: Control to stabilize and mitigate disturbances in a rotary inverted pendulum. Rev. Mex. Fis. E 58(2), 107–112 (2012)

    Google Scholar 

  8. Torres, C., Rubio, J.J., Aguilar-Ibáñez, C., Pérez-Cruz, J.H.: Stable optimal control applied to a cylindrical robotic arm. Neural Comput. Appl. (2013). doi:10.1007/s00521-012-1294-6

    Google Scholar 

  9. Ge, S.S., Lee, T.H., Harris, C.J.: Adaptive Neural Network Control of Robotic Manipulators. World Scientific, London (1998)

    Book  Google Scholar 

  10. Wang, L., Chai, T., Yang, C.: Neural-network-based contouring control for robotic manipulators in operational space. IEEE Trans. Control Syst. Technol. 20(4), 1073–1080 (2012)

    Article  Google Scholar 

  11. Young, H.K., Frank, L.L., Darren, M.D.: Intelligent optimal control of robotic manipulators using neural networks. Automatica 36, 1355–1364 (2000)

    Article  MATH  Google Scholar 

  12. Barambones, O., Etxebarria, V.: Robust neural control for robotic manipulators. Automatica 38(2), 235–242 (2002)

    Article  MATH  Google Scholar 

  13. Perez-Cruz, J.H., Rubio, J.J., Ruiz-Velázquez, E., et al.: Tracking control based on recurrent neural networks for nonlinear systems with multiple inputs and unknown deadzone. Abstr. Appl. Anal. 2012, 1–18 (2012)

    Article  Google Scholar 

  14. Rubio, J.J.: Modified optimal control with a backpropagation network for robotic arms. IET Control Theory Appl. 6(14), 2216–2225 (2012)

    Article  MathSciNet  Google Scholar 

  15. Tomlin, C., Pappas, G.J., Sastry, S.: Conflict resolution for air traffic management: a study in multi-agent hybrid systems. IEEE Trans. Autom. Control 43(4), 509–521 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  16. Varaiya, P.P.: Smart car on smart roads: problems of control. IEEE Trans. Autom. Control 38(2), 195–207 (1993)

    Article  MathSciNet  Google Scholar 

  17. Jeon, D., Tomizuka, M.: Learning hybrid force and position control of robot manipulators. IEEE Trans. Robot. Autom. 9, 423–431 (1996)

    Article  Google Scholar 

  18. Liberzon, D.: Switching in Systems and Control. Birkhauser, Boston (2003)

    Book  MATH  Google Scholar 

  19. Sun, Z.D., Ge, S.S.: Analysis and synthesis of switched linear control systems. Automatica 41, 181–195 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  20. Allerhand, L.I., Shaked, U.: Robust stability and stabilization of linear switched systems with dwell time. IEEE Trans. Autom. Control 56(2), 381–386 (2011)

    Article  MathSciNet  Google Scholar 

  21. Xie, G.M., Wang, L.: Periodic stabilizability of switched linear control systems. Automatica 45, 2141–2148 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  22. Branicky, M.: Multiple Lyapunov functions and other analysis tools for switched and hybrid systems. IEEE Trans. Autom. Control 43(4), 475–482 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  23. Long, L.J., Zhao, J.: Control of switched nonlinear systems in p-normal form using multiple lyapunov functions. IEEE Trans. Autom. Control 57(5), 1285–1291 (2012)

    Article  MathSciNet  Google Scholar 

  24. Long, F., Fei, S.: Neural networks stabilization and disturbance attenuation for nonlinear switched impulsive systems. Neurocomputing 71, 1741–1747 (2008)

    Article  Google Scholar 

  25. Han, T.T., Ge, S.S., Lee, T.T.: Adaptive neural control for a class of switched nonlinear systems. Syst. Control Lett. 58, 109–118 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  26. Li, Z., Chen, J., Zhang, G.: Stabilising tracking of uncertain switched non-linear systems in semi-strict feedback form. IET Control Theory Appl. 6(4), 588–595 (2012)

    Article  MathSciNet  Google Scholar 

  27. Rubio, J.J.: SOFMLS: Online self-organizing fuzzy modified least square network. IEEE Trans. Fuzzy Syst. 17(6), 1296–1309 (2009)

    Article  MathSciNet  Google Scholar 

  28. Leite, D., Ballini, R., Costa, P., Gomide, F.: Evolving fuzzy granular modeling from non-stationary fuzzy data streams. Evolving Syst. 3(2), 65–79 (2012)

    Article  Google Scholar 

  29. Lughofer, E.: Sigle pass active learning with conflict and ignorance. Evolving Syst. 3, 251–271 (2012)

    Article  Google Scholar 

  30. Lughofer, E.: A dynamic split-and-merge approach for evolving cluster models. Evolving Syst. 3, 135–151 (2012)

    Article  Google Scholar 

  31. Maciel, L., Lemos, A., Gomide, F., Ballini, R.: Evolving fuzzy systems for pricing fixed income options. Evolving Syst. 3, 5–18 (2012)

    Article  Google Scholar 

  32. Rubio, J.J., Perez Cruz, J.H.: Evolving intelligent system for the modelling of nonlinear systems with dead-zone input. Appl. Soft Comput. (2013). doi:10.1016/j.asoc.2013.03.018

    Google Scholar 

  33. Rubio, J.J., Serrano, J., Figueroa, M., Aguilar-Ibáñez, C.F.: Dynamic model with sensor and actuator for an articulated robotic arm. Neural Comput. Appl. (2013). doi:10.1007/s00521-012-1259-9

    Google Scholar 

  34. Rubio, J.J., Pacheco, J., Pérez-Cruz, J.H., Torres, F.: Mathematical model with sensor and actuator for a transelevator. Neural Comput. Appl. (2013). doi:10.1007/s00521-012-1224-7

    Google Scholar 

  35. Zhang, D., Yu, L., Wang, Q.G., et al.: Estimator design for discrete-time switched neural networks with asynchronous switching and time-varying delay. IEEE Trans. Neural Netw. Learn. Syst. 23(5), 827–834 (2012)

    Article  MathSciNet  Google Scholar 

  36. Liu, Z., Li, C.W.: Fuzzy neural networks quadratic stabilization output feedback control for biped robots via H-infinity approach. IEEE Trans. Syst. Man Cybern. B Cybern. 33(1), 67–84 (2003)

    Google Scholar 

  37. Narendra, K.S., Annaswamy, A.M.: Stable Adaptive Systems. Prentice Hall, Englewood Cliffs, New Jersey (1989)

    MATH  Google Scholar 

  38. Rubio, J.J., Yu, W.: A new discrete-time sliding-mode control with time-varying gain and neural identification. Int. J. Control 79(4), 338–348 (2006)

    Article  MATH  Google Scholar 

  39. Slotine, J.J., Li, W.P.: Applied Nonlinear Control. Prentice Hall, Englewood Cliffs, New Jersey (1991)

    MATH  Google Scholar 

  40. Chen, H., Wang, C.L., Zhang, B.W., Zhang, D.K.: Saturated tracking control for nonholonomic mobile robots with dynamic feedback. Trans. Inst. Meas. Control 35(2), 105–116 (2013)

    Article  Google Scholar 

  41. Chen, H., Wang, C.L., Yang, L., Zhang, D.K.: Semiglobal stabilization for nonholonomic mobile robots based on dynamic feedback with inputs saturation. J. Dyn. Syst. Meas. Control Trans. ASME 134(4), 041006.1–041006.8. (2012)

    Google Scholar 

  42. Yu, W., Li, X.: PD control of robot with velocity estimation and uncertainties compensation. Int. J. Robot. Autom. 21(1), 1–9 (2006)

    MATH  Google Scholar 

  43. Rubio, J.J., Soriano, L.A.: An asymptotic stable proportional derivative control with sliding mode gravity compensation and with a high gain observer for robotic arms. Int. J. Innov. Comput. Inf. Control 6(10), 4513–4525 (2010)

    Google Scholar 

  44. Vazquez, D.M., Rubio, J.J., Pacheco, J.: A characterization framework for epileptic signals. IET Image Process. 6(9), 1227–1235 (2012)

    Article  MathSciNet  Google Scholar 

  45. Rubio, J.J., Vazquez, D.M., Mujica-Vargas, D.: Acquisition system and approximation of brain signals. IET Sci. Meas. Technol. 7(4), 232–239 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, L., Fei, S., Sun, L. et al. Design of Robust Adaptive Neural Switching Controller for Robotic Manipulators with Uncertainty and Disturbances. J Intell Robot Syst 77, 571–581 (2015). https://doi.org/10.1007/s10846-013-0008-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-013-0008-3

Keywords

Navigation