Skip to main content

Advertisement

Log in

Kinematics, Dynamics and Power Consumption Analyses for Turning Motion of a Six-Legged Robot

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper deals with kinematics, dynamics and power consumption analyses of a six-legged robot generating turning motions to follow a circular path. Direct and inverse kinematics analysis has been carried out for each leg in order to develop an overall kinematics model of the six-legged robot. It aims to estimate energy-optimal feet forces and joint torques of the six-legged robot, which are necessary to have for its real-time control. To determine the optimum feet forces, two approaches are developed, such as minimization of norm of feet forces and minimization of norm of joint torques using a least square method, and their performances are compared. The developed kinematics and dynamics models are tested through computer simulations for generating turning motion of a statically stable six-legged robot over flat terrain with four different duty factors. The maximum values of feet forces and joint torques decrease with the increase of duty factor. A power consumption model has been derived for the statically stable wave gaits to minimize the power requirement for both optimal foot force distributions and optimal foot-hold selection. The variations of average power consumption with the height of the trunk body and radial offset have been analyzed in order to find out energy-optimal foothold. A parametric study on energy consumption has been carried out by varying angular velocity of the robot to minimize the total energy consumption during locomotion. It has been found that the energy consumption decreases with the increase of angular velocity for a particular traveled distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Song, S.M., Waldron, K.J.: Machines That Walk: The Adaptive Suspension Vehicle. The MIT Press, Cambridge, Massachusetts (1989)

    Google Scholar 

  2. Howard, D., Zhang, S.J., Sanger, D.J.: Kinematic analysis of a walking machine. Math. Comput. Simul. 41, 525–538 (1996)

    Article  Google Scholar 

  3. Waldron, K.J., Raghavan, M., Roth, B.: Kinematics of a hybrid series–parallel manipulation system. Trans. ASME J. Dyn. Syst. Meas. Contr. 111, 211–221 (1989)

    Article  Google Scholar 

  4. Zhang, S.J., Howard, D., Sanger, D.J., Kerr, D.R., Miao, S.: Walking machine design based on the mechanics of the Stewart platform. In: Proc. of ASME ESDA Conference, pp. 849–855. London (1994)

  5. Lee, J.K., Song, S.M.: A study of instantaneous kinematics of walking machines. Int. J. Robot. Autom. 5(3), 131–138 (1990)

    Google Scholar 

  6. Barreto, J.P., Trigo, A., Menezes, P., Dias, J., de Almeida, A.T.: FBD-The free body diagram method. Kinematic and dynamic modeling of a six leg robot. In: Proc. of IEEE International Conference on Robotics and Automation, pp. 423–428 (1998)

  7. Erden, M.S., Leblebicioglu, K.: Torque distribution in a six-legged robot. IEEE Trans. Robot. 23(1), 179–186 (2007)

    Article  Google Scholar 

  8. Lin, B.S., Song, S.M.: Dynamic modeling, stability and energy efficiency of a quadrupedal walking machine. In: Proc. of IEEE International Conference on Robotics and Automation, pp. 367–373 (1993)

  9. Pfeiffer, F., Weidemann, H.J., Danowski, P.: Dynamics of walking stick insect. In: Proc. of IEEE International Conference on Robotics and Automation, pp. 1458–1463 (1987)

  10. Freeman, S., Orin, D.E.: Efficient dynamic simulation of a quadruped using a decoupled tree-structure approach. Int. J. Robot. Res. 10(6), 619–627 (1991)

    Article  Google Scholar 

  11. Roy, S.S., Singh, A.K., Pratihar, D.K.: Estimation of optimal feet forces and joint torques for on-line control of six-legged robot. Robot. Comput. Integr. Manuf. 27(5), 910–917 (2011)

    Article  Google Scholar 

  12. Wang, Z.Y., Ding, X.L., Rovetta, A.: Analysis of typical locomotion of a symmetric hexapod robot. Robotica 28, 893–907 (2010)

    Article  Google Scholar 

  13. Wang, Z., Ding, X., Rovetta, A., Giusti, A.: Mobility analysis of the typical gait of a radial symmetrical six-legged robot. Mechatronics 21(7), 1133–1146 (2011)

    Article  Google Scholar 

  14. Li, K., Ding, X., Ceccarell, M.: A total torque index for dynamic performance evaluation of a radial symmetric six-legged robot. Front. Mech. Eng. 7(2), 219–230 (2012)

    Article  Google Scholar 

  15. Shah, S.V., Saha, S.K., Dutt, J.K.: Modular framework for dynamic modeling and analyses of legged robots. Mech. Mach. Theory 49, 234–255 (2012)

    Article  Google Scholar 

  16. Soyguder, S., Alli, H.: Kinematic and dynamic analysis of a hexapod walking–running–bounding gaits robot and control actions. Comput. Electr. Eng. 38(2), 444–458 (2012)

    Article  Google Scholar 

  17. García-López, M.C., Gorrostieta-Hurtado, E., Vargas-Soto, E., Ramos-Arreguín, J.M., Sotomayor-Olmedo, A., Moya Morales, J.C.: Kinematic analysis for trajectory generation in one leg of a hexapod robot. Proc. Tech. 3, 342–350 (2012)

    Article  Google Scholar 

  18. Zhang, C.D., Song, S.M.: Stability analysis of wave-crab gaits of a quadruped. J. Robot. Syst. 7(2), 243–276 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  19. Kumar, V., Waldron, K.J.: Gait analysis for walking machines for omnidirectional locomotion on uneven terrain. In: Morecki, A., Bianchi, G., Kectzior, K. (eds.) 7th CISM-IFToMM Symp. Theory and Practice of Robots and Manipulators, pp. 37–62. Udine, Italy (1988)

  20. Orin, D.E.: Supervisory control of a multi-legged robot. Int. J. Robot. Res. 1, 79–91 (1982)

    Article  Google Scholar 

  21. Hirose, S., Kikuchi, H., Umetani, Y.: The standard circular gait of a quadruped walking vehicle. Adv. Robot. 1(2), 143–164 (1986)

    Article  Google Scholar 

  22. Zhang, C.D., Song, S.M.: Gaits and geometry of a walking chair for the disabled. J. Terramech. 26(3–4), 211–233 (1989)

    Article  Google Scholar 

  23. Zhang, C.D., Song, S.M.: Turning gait of a quadrupedal walking machine. In: Proc. of IEEE International Conference on Robotics and Automation, pp. 2106–2112. Sacramento, California (1991)

  24. Miao, S., Howard, D.: Optimal tripod turning gait generation for hexapod walking machines. Robotica 18, 639–649 (2000)

    Article  Google Scholar 

  25. Estremera, J., Cobano, J.A., Gonzalez de Santos, P.: Continuous free-crab gaits for hexapod robots on a natural terrain with forbidden zones: an application to humanitarian demining. Robot. Auton. Syst. 58, 700–711 (2010)

    Article  Google Scholar 

  26. Pratihar, D.K., Deb, K., Ghosh, A.: Optimal turning gait of a six-legged robot using GA-fuzzy approach. Artif. Intell. Eng. Des. Anal. Manuf. 14, 207–219 (2000)

    Article  Google Scholar 

  27. Pratihar, D.K., Deb, K., Ghosh, A.: Optimal path and gait generations simultaneously of a six-legged robot using a GA-fuzzy approach. Robot. Auton. Syst. 41, 1–20 (2002)

    Article  Google Scholar 

  28. Roy, S.S., Pratihar, D.K.: Effects of turning gait parameters on energy consumption and stability of a six-legged walking robot. Robot. Auton. Syst. 60, 72–82 (2012)

    Article  Google Scholar 

  29. Denavit, J., Hartenberg, R.S.: A kinematic notation for lower-pair mechanisms based on matrices. ASME J. Appl. Mech. 77, 215–221 (1955)

    MathSciNet  Google Scholar 

  30. Fu, K.S., Gonzalez, R.C., Lee, C.S.G.: Robotics: Control, Sensing, Vision, and Intelligence. McGraw Hill, Singapore (1987)

    Google Scholar 

  31. Chapra, S., Canale, R.: Numerical Methods for Engineers. Tata McGraw-Hill, New Delhi (2006)

    Google Scholar 

  32. Nishii, J.: An analytical estimation of the energy cost for legged locomotion. J. Theor. Biol. 238, 636–645 (2006)

    Article  MathSciNet  Google Scholar 

  33. Kar, D.C., Issac, K.K., Jayarajan, K.: Minimum energy force distribution for a walking robot. J. Robot. Syst. 18(2), 47–54 (2001)

    Article  MATH  Google Scholar 

  34. Messuri, D., Klein, C.: Automatic body regulation for maintaining stability of a legged vehicle during rough-terrain locomotion. IEEE J. Robot. Autom. RA-1(3), 32–141 (1985)

    Google Scholar 

  35. Hirose, S., Tsukagoshi, H., Yoneda, K.: Normalized energy stability margin: generalized stability criterion for walking vehicles. In: Proc. of the International Conference on Climbing and Walking Robots, pp. 71–76. Brussels, Belgium (1998)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dilip Kumar Pratihar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roy, S.S., Pratihar, D.K. Kinematics, Dynamics and Power Consumption Analyses for Turning Motion of a Six-Legged Robot. J Intell Robot Syst 74, 663–688 (2014). https://doi.org/10.1007/s10846-013-9850-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-013-9850-6

Keywords

Navigation