Skip to main content
Log in

Impulse Control for Planar Spring-Mass Running

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

In this paper, we present a novel control strategy for running which is robust to disturbances, and makes excellent use of passive dynamics for energy economy. Our strategy combines two ideas: an existing flight phase policy, and a novel stance phase impulse control policy. The state-of-the-art flight phase policy commands a leg angle trajectory that results in a consistent horizontal center-of-mass velocity from hop to hop when running over uneven terrain, thus maintaining a steady gait and avoiding falls. Our novel stance phase control policy rejects ground disturbances by matching the actuated model’s toe impulse profile to that of a passive spring-mass system hopping on flat rigid ground. This combined strategy is self-stable for changes in ground impedance or ground height, and thus does not require a ground model. Our strategy is promising for robotics applications, because there is a clear distinction between the passive dynamic behavior of the model and the active controller, it does not require sensing of the environment, and it is based on a sound theoretical background that is compatible with existing high-level controllers for ideal spring-mass models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Daley, M.A., Usherwood, J.R., Felix, G., Biewener, A.A.: Running over rough terrain: Guinea fowl maintain dynamic stability despite a large unexpected change in substrate height. J. Exp. Biol. 209, 171–187 (2006)

    Article  Google Scholar 

  2. Grimes, J.A., Hurst, J.W.: The design of atrias 1.0, a unique monopod hopping robot. In: International Conference on Climbing and Walking Robots (2012)

  3. Ahmadi, M., Buehler, M.: Controlled passive dynamic running experiments with the arl monopod ii. IEEE Trans. Robot. 22, 974–986 (2006)

    Article  Google Scholar 

  4. Zeglin, G., Brown, H.B.: Control of a bow leg hopping robot. In: IEEE International Conference on Robotics and Automation (1998)

  5. Playter, R., Buehler, M., Raibert, M.: Bigdog. In: Gerhart, G.R., Shoemaker, C.M., Gage, D.W. (eds.) Proceedings of SPIE International Society for Optical Engineering, vol. 6230, p. 62302O. SPIE (2006)

  6. Blickhan, R.: The spring-mass model for running and hopping. J. Biomech. 22, 1217–1227 (1989)

    Article  Google Scholar 

  7. Full, R.J., Koditschek, D.E.: Templates and anchors: neuromechanical hypotheses of legged locomotion on land. J. Exp. Biol. 202, 3325–3332 (1999)

    Google Scholar 

  8. Full, R.J., Farley, C.T.: Musculoskeletal dynamics in rhythmic systems—a comparative approach to legged locomotion. In: Winters, J.M., Crago, P.E. (eds.) Biomechanics and Neural Control of Posture and Movement. Springer-Verlag, New York (2000)

    Google Scholar 

  9. Blickhan, R., Full, R.J.: Similarity in multilegged locomotion: bouncing like a monopode. J. Comp. Physiol. 173, 509–517 (1993)

    Article  Google Scholar 

  10. Schmitt, J., Holmes, P.: Mechanical models for insect locomotion: dynamics and stability in the horizontal plane i. theory. Biol. Cybernet. 83, 501–515 (2000)

    Article  MATH  Google Scholar 

  11. Blickhan, R.: The spring-mass model for running and hopping. J. Biomech. 22(11/12), 1217–1227 (1989)

    Article  Google Scholar 

  12. Cavagna, G.A.: Elastic bounce of the body. J. Appl. Physiol. 29(3), 279–282 (1970)

    Google Scholar 

  13. Farley, C.T., Gonzalez, O.: Leg stiffness and stride frequency in human running. J. Biomech. 29(2), 181–186 (1996)

    Article  Google Scholar 

  14. Ferris, D.P., Farley, C.T.: Interaction of leg stiffness and surface stiffness during human hopping. The American Physiological Society 82, 15–22 (1997)

    Google Scholar 

  15. McMahon, T.A., Cheng, G.C.: The mechanics of running: how does stiffness couple with speed? J. Biomech. 23, 65–78 (1990)

    Article  Google Scholar 

  16. Raibert, M.: Legged Robots That Balance. MIT Press, Cambridge (1986)

    Google Scholar 

  17. Schwind, W.J., Koditschek, D.E.: Approximating the stance map of a 2-dof monoped runner. J. Nonlinear Sci. 10, 533–568 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  18. Grimmer, S., Ernst, M., Gunther, M., Blickhan, R.: Running on uneven ground: leg adjustment to vertical steps and self-stability. J. Exp. Biol. 211(18), 2989–3000 (2008)

    Article  Google Scholar 

  19. Geyer, H., Seyfarth, A., Blickhan, R.: Spring-mass running: simple approximate solution and application to gait stability. J. Theor. Biol. 232, 315–328 (2005)

    Article  MathSciNet  Google Scholar 

  20. Schwind, W.J.: Spring loaded inverted Pendulum running: a plant model. Ph.D. thesis, The University of Michigan Press, Ann Arbor (1998)

  21. Schwind, W.J., Koditschek, D.E.: Characterization of monopod equilibrium gaits. In: IEEE International Conference on Robotics and Automation, pp. 1986–1992 (1997)

  22. Ernst, M., Geyer, H., Blickhan, R.: Spring-legged locomotion on uneven ground: a control approach to keep the running speed constant. In: Proceedings of the 12th International Conference on Climbing and Walking Robots (CLAWAR) (2009)

  23. Seyfarth, A., Geyer, H.: Natural control of spring-like running: optimized selfstability. In: CLAWAR (2002)

  24. Seyfarth, A., Geyer, H., Herr, H.: Swing-leg retraction: a simple control model for stable running. J. Exp. Biol. 206, 2547–2555 (2003)

    Article  Google Scholar 

  25. Pratt, G.A., Williamson, M.M.: Series elastic actuators. In: IEEE International Conference on Intelligent Robots and Systems, vol. 1, pp. 399–406 (1995)

  26. Robinson, D.W., Pratt, J.E., Paluska, D.J., Pratt, G.A.: Series elastic actuator development for a biomimetic walking robot. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics (1999)

  27. Kemper, K., Koepl, D., Hurst, J.: Optimal passive dynamics for torque/force control. In: International Confererence of Robotics and Automation (2010)

  28. Buehler, M., Playter, R., Raibert, M.: Robots step outside. In: International Symposium Adaptive Motion of Animals and Machines (2005)

  29. Pratt, J., Pratt, G.: Exploiting natural dynamics in the control of a planar bipedal walking robot. In: Proceedings of the Thirty-Sixth Annual Allerton Conference on Communication, Control, and Computing. (Monticello, IL) (1998)

  30. Farley, C.T., Houdijk, H.H.P., Strien, C.V., Louie, M.: Mechanism of leg stiffness adjustment for hopping on surfaces of different stiffnesses. The American Physiological Society 85, 1044–1055 (1998)

    Google Scholar 

  31. Wilson, A., McGuigan, P.: pogo stick horse legs need better track surfaces. J. Exp. Biol. 206, 1261 (2003)

    Article  Google Scholar 

  32. Koepl, D., Kemper, K., Hurst, J.: Force control for spring-mass walking and running. In: International Conference of Advanced Intelligent Mechatronics (2010)

  33. Koepl, D., Hurst, J.: Force control for planar spring-mass running. In: International Conference on Intelligent Robots and Systems (2011)

  34. Niiyama, R., Nishikawa, S., Kuniyoshi, Y.: Athlete robot with applied human muscle activation patterns for bipedal running. In: IEEE-RAS International Conference on Humanoid Robots (2010)

  35. Jonathan, J.E.C., Hurst, W., Rizzi, A.A.: An actuator with physically variable stiffness for highly dynamic legged locomotion. In: IEEE Conference on Robotics and Automation (2004)

  36. Verrelst, B., Vanderborght, B.: Novel robotic applications using adaptable compliant actuation. An implementation towards reduction of energy consumption for legged robots. In: J. Buchli (ed.) Mobile Robotics, Moving Intelligence (2006). doi:10.5772/4737

  37. Whittacker, E.: A Treatise on the Analytical Dynamics of Particles and Rigid Bodies. Cambridge University Press, Cambridge (1904)

    Google Scholar 

  38. Chen, C.-T.: Linear System Theory and Design. Oxford Univeresity Press (1999)

  39. Moritz, C.T., Farley, C.T.: Human hopping on damped surfaces: strategies for adjusting leg mechanics. Proc. R. Soc. Lond. 270, 1741–1746 (2003)

    Article  Google Scholar 

  40. Hurst, J.W., Chestnutt, J.E., Rizzi, A.A.: Series compliance for an efficient running gait: Lessons learned from the ecd leg. IEEE Robot. Autom. Mag. 15, 42–51 (2008)

    Article  Google Scholar 

  41. Zeglin, G.: Uniroo: a one-legged dynamic hopping robot. Tech. rep., Massachusetts Intitute of Technology, Cambridge, Massachusetts (1991)

  42. Marc Raibert, G.N.R.,P., Blankespoor, K., the BigDog Team: Bigdog, the rough-terrain quadruped robot. In: Proceedings of the 17th World Congres (IFAC’08). The International Federation of Automatic Control, Seoul, Korea (2008)

  43. Andrews, B., Miller, B., Schmitt, J., Clark, J.E.: Running over unknown rough terrain with a one-legged planar robot. Bioinspir Biomim. 6(2), 173 (2011)

    Article  Google Scholar 

  44. Moritz, C.T., Farley, C.T.: Human hoppers compensate for simultaneous changes in surface compression and energy dissipation on heavily damped surfaces. J. Biomech. 39(6), 1030–1038 (2006)

    Article  Google Scholar 

  45. van der Krogt, M.M., de Graaf, W.W., Farley, C.T., Moritz, C.T., Casius, L.R., Bobbert, M.F.: Robust passive dynamics of the musculoskeletal system compensate for unexpected surface changes in human hopping. J. Appl. Physiol. 107(3), 801–808 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Hurst.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koepl, D., Hurst, J. Impulse Control for Planar Spring-Mass Running. J Intell Robot Syst 74, 589–603 (2014). https://doi.org/10.1007/s10846-013-9877-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-013-9877-8

Keywords

Navigation