Skip to main content
Log in

Modeling and Sliding Mode Control of a Micro Helicopter-Airplane System

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper presents the regulation and trajectory tracking for a Micro Coaxial Rocket Helicopter (MCR UAV), as well as the control of a mini aircraft. The former vehicle has the characteristic of performing hover and forward flight while the latter vehicle is considered as an external air transporter for the MCR UAV. For control purposes, the helicopter stabilization is based on sliding mode controllers which avoid the chattering generated during the flight and allow the MCR UAV to perform tracking of smooth trajectories, Furthermore a PD controller stabilizes the aircraft in order to execute semi-autonomous flight. A flight computer for these aerial vehicles consists of a homemade embedded system, low-cost sensors, and signal conditioning circuits, analog filters and actuator. The proposed control algorithms are implemented on the embedded system. Simulation and experimental results show the good performance of the developed system during the flight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benallegue, A., Mokhtari, A., Fridman, L.: High-order sliding-mode observer for a quadrotor UAV. J. Robust Nonlin. 18, 427–440 (2008)

    Article  MathSciNet  Google Scholar 

  2. Bouabdallah, S., Siegwart, R., Caprari, G.: Design and Control of an Indoor Coaxial Helicopter. International Conference on Intelligent Robots and Systems, pp. 2930–2935, China (2006)

  3. Castillo, P., Lozano, R., Dzul, A.: Modelling and Control of Miniflying Machines. Springer-Verlag, England (2005)

    Google Scholar 

  4. Chauffaut, C., Espinoza, E.S., Escareno, J., Lozano, R.: Towards gun- and aircraft-launched MAVs: embedded flight control system. In: 1st IFAC Conference on Embedded Systems, Computational Intelligence and Telematics in Control, CESCIT’12, pp. 260–265. Wuerzburg, Germany (2012)

  5. Derafa, L., Benallegue, A., Fridman, L.: Super Twisting Control Algorithm for the Attitude Tracking of a Four Rotors UAV. J. Frankl. Inst. doi:10.1016/j.jfranklin.2011.10.011 (2013)

    Google Scholar 

  6. Dzul, A., Hamel, T., Lozano, R.: Modeling and Nonlinear Control for a Coaxial Helicopter. IEEE International Conference on Systems, Man and Cybernetics, Tunisia (2002)

  7. Emelýanov, S.V., Korovin, S.K., Levant, A.: Higth-order sliding modes in control systems. Comput. Math. Model. 7(3), 294–318 (1996)

    Article  MathSciNet  Google Scholar 

  8. Espinoza, E.S., Garcia, O., Sanahuja, G., Malo, A., Lozano, R.: Micro-helicopter for long distance missions: description and attitude stabilization. J. Intell. Robot. Syst. 70(1–4), 151–163 (2013)

    Article  Google Scholar 

  9. Etkin, B., Duff Reid, L.: Dynamics of Flight: Stability and Control. Wiley, New York (1996)

    Google Scholar 

  10. Gnemmi, P., Haertig, J.: Concept of a gun launched micro air vehicle. In: 26th AIAA Applied Aerodynamics Conference, Honolulu, Hawaii (2008)

  11. Goldstein, H., Poole, C.P., Safko, J.L.: Classical Mechanics. Adison-Wesley, USA (1983)

    Google Scholar 

  12. Greenwood, D.T.: Classical Mechanics. Dover Publications, Inc., N. Y. (1997)

    Google Scholar 

  13. Leishman, J.G.: Principles of Helicopter Aerodynamics. Cambridge University Press, USA (2006)

    Google Scholar 

  14. Levant, A.: Higher-Order Sliding Modes, Differentiation and Output-Feedback Control. Int. J. Control. 76(9), 924–941 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. Levant, A.: Sliding order and sliding accuracy in sliding mode control. Int. J. Control. 58(6), 1247–1263 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  16. Levant, A.: Robust exact differentiation via sliding mode technique. Automatica 34, 379–384 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  17. Lozano, R.: Unmanned Aerial Vehicles Embedded Control. John Wiley-ISTE Ltd, USA (2010)

    Google Scholar 

  18. Moreno, J.A., Osorio, M.: A Lyapunov approach to second-order sliding mode controllers and observers. In: 47th IEEE Conference on Decision and Control, pp. 2856–2861 (2008)

  19. Phillips, W.F.: Mechanics of Flight. Wiley, New York (2004)

    Google Scholar 

  20. Poznyac, A.S.: Mathematics Lecture Notes. The Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico (2011)

    Google Scholar 

  21. Spong, M.W., Hutchinson, S., Vidyasagar, M.: Robot Modeling and Control. Wiley, New York (2006)

    Google Scholar 

  22. Stengel, R.F.: Flight Dynamics. Princeton University Press, USA (2004)

    Google Scholar 

  23. Stevens, B.L., Lewis, F.L.: Aircraft Control and Simulation. Wiley, New York (1992)

    Google Scholar 

  24. Utkin, V.I.: Sliding Modes in Control and Optimization. Springer-Verlag, USA (1992)

    Book  MATH  Google Scholar 

  25. Utkin, V.I., Guldner, J., Shi, J.: Sliding Mode Control in Electromechanical Systems. Taylor & Francis, USA (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Espinoza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Espinoza, E.S., Garcia, O., Lugo, I. et al. Modeling and Sliding Mode Control of a Micro Helicopter-Airplane System. J Intell Robot Syst 73, 469–486 (2014). https://doi.org/10.1007/s10846-013-9891-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-013-9891-x

Keywords

Navigation