Abstract
This article presents the contact force control approach for a quad-rotor system to perform tasks of interacting with the environment. The hovering capability of the quad-rotor system allows the force in the altitude direction to be regulated by realizing the impedance function. To obtain the better force control performance, inherent and external disturbances to the quad-rotor system are suppressed by designing the acceleration-based disturbance observer (AbDOB). Force tracking impedance control is applied to regulate the contact force to the environment. Simulation studies of force tracking control for changing a light bulb on the ceiling are performed to evaluate the feasibility of the proposed force control task for a quad-rotor system.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Xu, R., Ozguner, U.: Sliding mode control of a quadrotor helicopter. In: IEEE Conf. on Decision and Control, pp. 4957–4962 (2006)
Erginer, B., Altug, E.: Modeling and PD control of a quadrotor VTOL vehicle. In: IEEE Intelligent Vehicle Symposium, pp. 894–899 (2007)
Bouktir, Y., Haddad, M., Chettibi, T.: Trajectory planning for a quadrotor helicopter. In: Mediterranean Conf. on Control and Automation, pp. 1258–1263 (2008)
Das, A., Subbarao, K., Lewis, F.: Dynamic inversion with zero-dynamics stabilization for quadrotor control. IET Control Theory Appl. 3(3), 303–314 (2009)
Tayebi, A., McGilvray, S.: Attitude stabilization of a VTOL quadrotor aircraft. IEEE Trans. Control Syst. Technol. 14(3), 562–571 (2006)
Bouabdallah, S., Siegwart, R.: Full control of a quadrotor. In: IEEE Conf. on Intelligent Robots and Systems, pp. 153–158 (2007)
Zhang, R., Wang, X., Cai, K.Y.: Quadrotor aircraft control without velocity measurements. In: IEEE Conf. on Decision and Control, pp. 5213–5218 (2009)
Zhang, R., Quan, Q., Cai, K.Y.: Attitude control of a quadrotor aircraft subject to a class of time-varying disturbances. IET Control Theory Appl. 4(9), 1140–1146 (2010)
Zuo, Z.: Trajectory tracking control design with command-filtered compensation for a quad-rotor. IET Control Theory. Appl. 4(11), 2343–2355 (2010)
Dierks, T., Jagannathan, S.: Output feedback control of a quadrotor UAV using neural networks. IEEE Trans. Neural Netw. 21(1), 50–66 (2010)
Efe, M.: Neural network assisted computationally simple PID control of a quadrotor UAV. IEEE Trans. Ind. Inf. 7(2), 354–361 (2011)
Castillo, P., Dzul, A., Lozano, R.: Real-time stabilization and tracking of a four-rotor mini rotorcraft. In: IEEE Transactions on Control Systems Technology, pp. 510–516 (2004)
Jeong, S.H., Lee, M.K., Jung, S.: Calibration and control of rotor actuation of flymobile by force measurements. In: URAI, pp. 395–398 (2010)
Huang, H., Hoffmann, G.M., Waslander, S.L., Tomlin, C.J.: Aerodynamics and control of autonomous quadrotor helicopters in aggressive maneuvering. In: IEEE Conf. on Robotics and Automations, pp. 3277–3282 (2009)
Herrise, B., Hamel, T., Mahony, R., Russotto, F.: Landing a VTOL unmanned aerial vehicle on a moving platform using optical flow. IEEE Trans. Robot. 28(1), 77–89 (2012)
Schwager, M., Jullian, B., Angermann, M., Rus, D.: Eyes in the sky : decentralized control for the deployment of robotic camera networks. Proc. IEEE 99(9), 1514–1516 (2011)
Achtelik, M., Zhang, T., Kuhnlenz, K., Buss, M.: Visual tracking and control of a quadcoptor using a stereo camera system and inertial sensors. In: IEEE Conf. on Mechatronics and Automation, pp. 2863–2869 (2009)
Guenard, N., Hamel, T., Mahony, R.: A practical visual servo control for an unmanned aerial vehicle. IEEE Trans. Robot. 24(2), 331–340 (2008)
Oner, K.T., Cetinsoy, E., Unel, M., Aksit, M.F., Kandemir, I., Gulez, K.: Dynamic model and control of a new quadrotor unmanned aerial vehicle with tilt-wing mechanism. World Acad. Sci. Eng. Technol. 45, 58–63 (2008)
Jeong, S.H., Jung, S.: Novel design and position control of an omni-directional flying automobile (Omni-flymobile). In: ICCAS, pp. 2480–2484 (2010)
Hogan, N.: Impedance control : an approach to manipulator, part i, ii, iii. ASME J. Dyn. Syst. Meas. Control 3, 1–24 (1985)
Anderson, R., Spong, M.W.: Hybrid impedance control of robotic manipulators. In: IEEE Conference on Robotics and Automations, pp. 1073–1080 (1987)
Liu, G.J., Goldenberg, A.A.: Robust hybrid impedance control of robot manipulators. In: Proc. IEEE Conference on Robotics and Automations, pp. 287–292 (1991)
Seraji, H.: Adaptive admittance control: an approach to explicit force control in compliant motion. In: Proc. IEEE Conference on Robotics and Automations, pp. 2705–2712 (1994)
Jung, S., Hsia, T.C.: Adaptive force tracking impedance force control of robot for cutting process. In: IEEE Conference on Robotics and Automations, pp. 1800–1805 (1999)
Jung, S., Hsia, T.C., Bonitz, R.G.: Force tracking impedance control of robot manipulators under unknown environment. IEEE Trans. Control Syst. Technol. 12(2), 474–483 (2004)
Hsia, T.C., Gao, L.S.: Robot manipulator control using decentralized linear time invariant time-delayed joint controllers. In: IEEE Conf. on Robotics and Automation, pp. 2070–2075 (1990)
Youcef-Toumi, K.: Stability of uncertain linear system with time delay. ASME Trans. Dyn. Syst. Meas. Control 113, 558–567 (1991)
Youcef-Toumi, K.: Analysis of linear time invariant system with time delay. . ASME Trans. Dyn. Syst. Meas. Control 114, 544–555 (1992)
Raibert, M., Craig, J.J.: Hybrid position/force control of manipulators. ASME J. Dyn. Syst. Meas. Control 102, 126–133 (1981)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Jung, S. An Impedance Force Control Approach to a Quad-Rotor System Based on an Acceleration-Based Disturbance Observer. J Intell Robot Syst 73, 175–185 (2014). https://doi.org/10.1007/s10846-013-9929-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10846-013-9929-0