Skip to main content
Log in

Hard Real-Time Implementation of a Nonlinear Controller for the Quadrotor Helicopter

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

A hard real-time implementation on a single processor of a nonlinear controller for trajectory tracking of the quadrotor helicopter is presented. An inertial measurement unit and an Optitrack positioning system provide the necessary state measurements. The nonlinear controller has been previously published, so that, this paper focuses on the details of its onboard implementation. In particular, we propose a hard real-time algorithm, a method to identify the aerodynamic characteristics of the actuators and a procedure to tune the nonlinear control gains. Flying tests are presented to illustrate the performance of the quadrotor closed loop dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Al-Hiddabi, S.A.: Quadrotor control using feedback linearization with dynamic extension. In: 6th International Symposium on Mechatronics and its Applications, 2009. ISMA ’09. pp. 1–3 (2009)

  2. Baruah, S.K., Mok, A.K., Rosier, L.E.: Preemptively scheduling hard-real-time sporadic tasks on one processor. In: 11th Real-Time Systems Symposium, 1990. Proceedings, pp. 182–190. IEEE (1990)

  3. Baruah, S.K., Rosier, L.E., Howell, R.R.: Algorithms and complexity concerning the preemptive scheduling of periodic, real-time tasks on one processor. Real-Time Syst. 2(4), 301–324 (1990)

    Article  Google Scholar 

  4. Bhat, S.P., Bernstein, D.S.: A topological obstruction to continuous global stabilization of rotational motion and the unwinding phenomenon. Syst. Control Lett. 39(1), 63–70 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bouabdallah, S., Noth, A., Siegwart, R.: Pid vs lq control techniques applied to an indoor micro quadrotor. In: 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems. (IROS 2004). Proceedings, vol. 3, pp. 2451–2456 (2004)

  6. Brown, T., Pasetti, A., Pree, W., Henzinger, T.A., Kirsch, C.M.: A reusable and platform-independent framework for distributed control systems. In: 20th Conference Digital Avionics Systems, 2001. DASC, vol. 2, pp. 6A1/1–6A1/11 (2001)

  7. Buttazzo, G.C.: Real-time scheduling and resource management. Handbook of Real-Time and Embedded Systems (2008)

  8. Campbell, J., Hamilton, J., Iskandarani, M., Givigi, S.: A systems approach for the development of a quadrotor aircraft. In: 2012 IEEE International Systems Conference (SysCon), pp. 1–7 (2012)

  9. Castillo, P., Dzul, A., Lozano, R.: Real-time stabilization and tracking of a four-rotor mini rotorcraft. IEEE Trans. Control Syst. Technol. 12(4), 510–516 (2004)

    Article  MathSciNet  Google Scholar 

  10. Chamseddine, A., Zhang, Y., Rabbath, C.A., Join, C., Theilliol, D.: Flatness-based trajectory planning/ replanning for a quadrotor unmanned aerial vehicle. IEEE Trans. Aerosp. Electron. Syst. 48(4), 2832–2848 (2012)

    Article  Google Scholar 

  11. Chaturvedi, N.A., Sanyal, A.K., McClamroch, N.H.: Rigid-body attitude control. IEEE Control Syst. 31(3), 30–51 (2011)

    Article  MathSciNet  Google Scholar 

  12. Corona-Sánchez, J.J., Rodríguez-Cortés, H.: Trajectory tracking control for a rotary wing vehicle powered by four rotors. J. Intell. Robot. Syst. 70, 39–50 (2013)

    Article  Google Scholar 

  13. Dierks, T., Jagannathan, S.: Output feedback control of a quadrotor UAV using neural networks. IEEE Trans. Neural Netw. 21(1), 50–66 (2010)

    Article  Google Scholar 

  14. Dydek, Z.T., Annaswamy, A.M., Lavretsky, E.: Adaptive control of quadrotor UAVs: A design trade study with flight evaluations. IEEE Trans. Control Syst. Technol. PP(99), 1 (2012)

    Google Scholar 

  15. Altug, E., Ostrowski, J.P., Mahony, R.: Control of a quadrotor helicopter using visual feedback. In: IEEE International Conference on Robotics and Automation, 2002. Proceedings. ICRA ’02, vol. 1, pp. 72–77 (2002)

  16. Efe, M.O.: Neural network assisted computationally simple pi d control of a quadrotor UAV. IEEE Trans. Ind. Inform. 7(2), 354–361 (2011)

    Article  Google Scholar 

  17. Estrada, S.A., Liceaga-Castro, E., Rodríguez-Cortés, H.: Nonlinear motion control of a rotary wing vehicle powered by four rotors. In: 2006 3rd International Conference on Electrical and Electronics Engineering, pp. 1–6 (2006)

  18. Gessow, A., Myers, C.G. Jr.: Aerodynamics of the Helicopter. Frederick Ungar Publishing Co., New York (1978)

    Google Scholar 

  19. Henzinger, T.A., Horowitz, B., Kirsch, C.M.: Giotto: a time-triggered language for embedded programming. Proc. IEEE 91(1), 84–99 (2003)

    Article  Google Scholar 

  20. Henzinger, T.A., Kirsch, C.M., Sanvido, M.A.A., Pree, W.: From control models to real-time code using giotto. IEEE Control Syst. 23(1), 50–64 (2003)

    Article  Google Scholar 

  21. Henzinger, T.A., Horowitz, B., Kirsch, C.M.: Giotto: A time-triggered language for embedded programming. In: Embedded Software, pp. 166–184. Springer, New York (2001)

    Chapter  Google Scholar 

  22. Hoffmann, G.M., Huang, H., Waslander, S.L., Tomlin, C.J.: Precision flight control for a multi-vehicle quadrotor helicopter testbed. Control Eng. Pract. 19(9), 1023–1036 (2011)

    Article  Google Scholar 

  23. Horowitz, B., Liebman, J., Ma, C., Koo, T.J., Henzinger, T.A., Sangiovanni-Vincentelli, A., Sastry, S.: Embedded-software design and system integration for rotorcraft UAV using platforms. In: Proc. 15th IFAC World Congress (2002)

  24. Laplante, P.A.: Real-Time Systems Design and Analysis. Wiley, New York (2004)

    Book  Google Scholar 

  25. Liu, J.W.S.: Real-time Systems. Prentice Hall, Englewood Cliffs, NJ (2000)

    Google Scholar 

  26. Nicol, C., Macnab, C.J.B., Ramirez-Serrano, A.: Robust adaptive control of a quadrotor helicopter. Mechatronics 21(6), 927–938 (2011)

    Article  Google Scholar 

  27. Ogata, K.: Modern Control Engineering, 5th edn. Prentice Hall, Englewood Cliffs, NJ (2009)

    Google Scholar 

  28. Pounds, P., Mahony, R., Corke, P.: Modelling and control of a large quadrotor robot. Control Eng. Pract. 18(7), 691–699 (2010) (Special Issue on Aerial Robotics)

    Article  Google Scholar 

  29. Raffo, G.V., Ortega, M.G., Rubio, F.R.: An integral predictive/nonlinear h8 control structure for a quadrotor helicopter. Automatica 46(1), 29–39 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  30. Roskam, J.: Airplane Flight Dynamics and Automatic Flight Controls, Part I. Roskam Aviation and Engineering Corporation (1982)

  31. Salazar-Cruz, S., Palomino, A., Lozano, R.: Trajectory tracking for a four rotor mini-aircraft. In: 44th IEEE Conference on Decision and Control, 2005 and 2005 European Control Conference. CDC-ECC ’05, pp. 2505–2510 (2005)

  32. Tayebi, A., McGilvray, S.: Attitude stabilization of a vtol quadrotor aircraft. IEEE Trans. Control Syst. Technol. 14(3), 562–571 (2006)

    Article  Google Scholar 

  33. Tomic, T., Schmid, K., Lutz, P., Domel, A., Kassecker, M., Mair, E., Grixa, I.L., Ruess, F., Suppa, M., Burschka, D.: Toward a fully autonomous UAV: research platform for indoor and outdoor urban search and rescue. IEEE Robot. Autom. Mag. 19(3), 46–56 (2012)

    Article  Google Scholar 

  34. Waslander, S.L., Hoffmann, G.M., Jang, J.S., Tomlin, C.J.: Multi-agent quadrotor testbed control design: integral sliding mode vs. reinforcement learning. In: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005. (IROS 2005), pp. 3712–3717 (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Rodríguez-Cortés.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guadarrama-Olvera, J.R., Corona-Sánchez, J.J. & Rodríguez-Cortés, H. Hard Real-Time Implementation of a Nonlinear Controller for the Quadrotor Helicopter. J Intell Robot Syst 73, 81–97 (2014). https://doi.org/10.1007/s10846-013-9962-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-013-9962-z

Keywords

Navigation