Abstract
A fault-tolerant method for stabilization and navigation of 3D heterogeneous formations is proposed in this paper. The presented Model Predictive Control (MPC) based approach enables to deploy compact formations of closely cooperating autonomous aerial and ground robots in surveillance scenarios without the necessity of a precise external localization. Instead, the proposed method relies on a top-view visual relative localization provided by the micro aerial vehicles flying above the ground robots and on a simple yet stable visual based navigation using images from an onboard monocular camera. The MPC based schema together with a fault detection and recovery mechanism provide a robust solution applicable in complex environments with static and dynamic obstacles. The core of the proposed leader-follower based formation driving method consists in a representation of the entire 3D formation as a convex hull projected along a desired path that has to be followed by the group. Such an approach provides non-collision solution and respects requirements of the direct visibility between the team members. The uninterrupted visibility is crucial for the employed top-view localization and therefore for the stabilization of the group. The proposed formation driving method and the fault recovery mechanisms are verified by simulations and hardware experiments presented in the paper.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Faigl, J., Krajník, T., Chudoba, J., Preucil, L., Saska, M.: Low-cost embedded system for relative localization in robotic swarms. In: Proc. of IEEE International Conference on Robotics and Automation (2013)
Krajník, T., Faigl, J., Vonásek, M., Kulich, V., Košnar, K., Přeučil, L.: Simple yet stable bearing-only navigation. J. Field Robot. 27(5), 511–533 (2010)
Saska, M., Krajník, T., Přeučil, L.: Cooperative micro uav-ugv autonomous indoor surveillance. In: IEEE SSD (2012)
Dong, W.: Robust formation control of multiple wheeled mobile robots. J. Intell. Robot. Syst. 62(3–4), 547–565 (2011)
Hengster-Movrić, K., Bogdan, S., Draganjac, I.: Multi-agent formation control based on bell-shaped potential functions. J. Intell. Robot. Syst. 58(2), 165–189 (2010)
Liu, Y., Jia, Y.: An iterative learning approach to formation control of multi-agent systems. Syst. Control Lett. 61(1), 148–154 (2012)
Do, K.D., Lau, M.W.: Practical formation control of multiple unicycle-type mobile robots with limited sensing ranges. J. Intell. Robot. Syst. 64(2), 245–275 (2011)
Ghommam, J., Mehrjerdi, H., Saad, M., Mnif, F.: Formation path following control of unicycle-type mobile robots. Robot. Auton. Syst. 58(5), 727–736 (2010)
Sira-Ramiandrez, H., Castro-Linares, R.: Trajectory tracking for non-holonomic cars: a linear approach to controlled leader-follower formation. In: IEEE Conf. on Decision and Control (CDC) (2010)
Xiao, F., Wang, L., Chen, J., Gao, Y.: Finite-time formation control for multi-agent systems. Automatica 45(11), 2605–2611 (2009)
No, T.S., Kim, Y., Tahk, M.-J., Jeon, G.-E.: Cascade-type guidance law design for multiple-uav formation keeping. Aerosp. Sci. Technol. 15(6), 431–439 (2011)
Saffarian, M., Fahimi, F.: Non-iterative nonlinear model predictive approach applied to the control of helicopters group formation. Robot. Auton. Syst. 57(67), 749–757 (2009)
Liu, C., Chen, W.-H., Andrews, J.: Piecewise constant model predictive control for autonomous helicopters. Robot. Auton. Syst. 59(78), 571–579 (2011)
Abdessameud, A., Tayebi, A.: Formation control of vtol unmanned aerial vehicles with communication delays. Automatica 47(11), 2383–2394 (2011)
Tanner, H., Christodoulakis, D.: Decentralized cooperative control of heterogeneous vehicle groups. Robot. Auton. Syst. 55(11), 811–823 (2007)
Isermann, R.: Fault-Diagnosis Systems: An Introduction from Fault Detection to Fault Tolerance. Springer (2006)
Freddi, A., Longhi, S., Monteriu, A.: Actuator fault detection system for a mini-quadrotor. In: IEEE International Symposium on Industrial Electronics (ISIE), pp. 2055–2060. IEEE (2010)
Heredia, G., Ollero, A., Bejar, M., Mahtani, R.: Sensor and actuator fault detection in small autonomous helicopters. Mechatronics 18(2), 90–99 (2008)
Ranjbaran, M., Khorasani, K.: Fault recovery of an under-actuated quadrotor aerial vehicle. In: 49th IEEE Conference on Decision and Control (CDC), pp. 4385–4392. IEEE (2010)
Ranjbaran, M., Khorasani, K.: Generalized fault recovery of an under-actuated quadrotor aerial vehicle. In: American Control Conference (ACC), pp. 2515–2520. IEEE (2012)
Mead, R., Long, R., Weinberg, J.B.: Fault-tolerant formations of mobile robots. In: IEEE/RSJ IROS, pp. 4805–4810. IEEE (2009)
Chamseddine, A., Zhang, Y., Rabbath, C.A.: Trajectory planning and re-planning for fault tolerant formation flight control of quadrotor unmanned aerial vehicles. In: American Control Conference (ACC), pp. 3291–3296. IEEE (2012)
Heredia, G., Caballero, F., Maza, I., Merino, L., Viguria, A., Ollero, A.: Multi-uav cooperative fault detection employing vision based relative position estimation. In: Proceedings of the 17th IFAC World Congress, pp. 12 093–12 098 (2008)
Heredia, G., Caballero, F., Maza, I., Merino, L., Viguria, A., Ollero, A.: Multi-unmanned aerial vehicle (UAV) cooperative fault detection employing differential global positioning (DGPS), inertial and vision sensors. Sensors 9(9), 7566–7579 (2009)
Ismail, A.R., Timmis, J.: Aggregation of swarms for fault tolerance in swarm robotics using an immuno-engineering approach. In: UK Workshop on Computational Intelligence (2009)
Christensen, A.L., O’Grady, R., Dorigo, M.: From fireflies to fault-tolerant swarms of robots. IEEE Trans. Evol. Comput. 13(4), 754–766 (2009)
Barambones, O., Etxebarria, V.: Robust adaptive control for robot manipulators with unmodelled dynamics. Cybern. Syst. 31(1), 67–86 (2000)
Alamir, M.: Stabilization of Nonlinear Systems Using Receding-Horizon Control Schemes. Ser. Lecture Notes in Control and Information Sciences, vol. 339. Springer, Berlin/Heidelberg (2006)
Mayne, D.Q., Rawlings, J.B., Rao, C.V., Scokaert, P.O.M.: Constrained model predictive control: stability and optimality. Automatica 36(6), 789–814 (2000)
Boscariol, P., Gasparetto, A., Zanotto, V.: Model predictive control of a flexible links mechanism. J. Intell. Robot. Syst. 58(2), 125–147 (2010)
Chao, Z., Zhou, S.-L., Ming, L., Zhang, W.-G.: Uav formation flight based on nonlinear model predictive control. Math. Probl. Eng. 2012(1), 1–16 (2012)
Defoort, M.: Distributed receding horizon planning for multi-robot systems. In: IEEE International Conference on Control Applications (CCA), pp. 1263–1268 (2010)
Zhang, X., Duan, H., Yu, Y.: Receding horizon control for multi-uavs close formation control based on differential evolution. Sci. China Inf. Sci. 53(2), 223–235 (2010)
Saska, M., Krajník, T., Vonásek, V., Vanek, P., Preucil, L.: Navigation, localization and stabilization of formations of unmanned aerial and ground vehicles. In: ICUAS (2013)
Krajník, T., Nitsche, M., Pedre, S., Přeučil, L., Mejail, M.: A simple visual navigation system for an UAV. In: International Multi-Conference on Systems, Signals and Devices, p. 34. IEEE, Piscataway (2012)
Krajník, T., Vonásek, V., Fišer, D., Faigl, J.: AR-drone as a platform for robotic research and education. In: Research and Education in Robotics: EUROBOT 2011. Springer, Heidelberg (2011)
Barfoot, T.D., Clark, C.M.: Motion planning for formations of mobile robots. Robot. Auton. Syst. 46, 65–78 (2004)
Nocedal, J., Wright, S.J.: Numerical Optimization. Springer (2006)
Movie: Movie of hw experiment and simulation presented in this paper. Online: http://imr.felk.cvut.cz/formation/ (2013). cit. 2013-2-22
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Saska, M., Krajník, T., Vonásek, V. et al. Fault-Tolerant Formation Driving Mechanism Designed for Heterogeneous MAVs-UGVs Groups. J Intell Robot Syst 73, 603–622 (2014). https://doi.org/10.1007/s10846-013-9976-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10846-013-9976-6