Skip to main content
Log in

Lane Detection and Tracking Using a Parallel-snake Approach

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

In this paper, we discuss the design of a parallel-snake model for lane detection and the use of a Kalman filter for tracking. The parallel-snake model is an extension of the open active contour model through the application of a parallel constraint to two open snakes. Compared with other models, this model can handle lanes with broken boundaries and reduce the convergence time with the aid of the parallel constraint and a double external energy force from two parallel snakes. To solve the problem in previous snake models, whereby the external force is lost on images with a low gradient, a balloon force is utilized to expand the double snakes from the center of the road to the lane boundaries. Because lane boundaries do not retain the parallel property, the captured images are transformed into a bird’s-eye view to retrieve the parallel property of lane boundaries by planar homography. At least four corresponding points are determined and the EM-based vanishing point estimation algorithm is applied to these points to estimate the planar homography. Finally, we use a Kalman filter for parameter optimization in lane tracking considering the continuity of lane parameters between consecutive frames; i.e., to predict the parameters of subsequent frames from the previous frame and refine the estimated results to improve robustness. Experimental results show that the proposed method achieves good performance on lane datasets with shadows, variations in illumination, and broken boundaries. Furthermore, it can handle both structured and unstructured (country) roads well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agarwal, A., Jawahar, C., Narayanan, P.: A survey of planar homography estimation techniques. Centre for Visual Information Technology, Technical Report, IIIT/TR/2005/12 (2005)

  2. Aly, M.: Real time detection of lane markers in urban streets. In: 2008 IEEE Intelligent Vehicles Symposium, pp. 7–12, IEEE (2008). doi:10.1109/IVS.2008.4621152

  3. Barnard, S.T.: Interpreting perspective images. Artif. Intell. 21, 435–462 (1983). doi:10.1016/S0004-3702(83)80021-6

    Article  Google Scholar 

  4. Benligiray, B., Topal, C., Akinlar, C.: Video-based lane detection using a fast vanishing point estimation method. In: IEEE International Symposium on Multimedia (ISM), 2012, pp. 348–351, (2012). doi:10.1109/ISM.2012.70

  5. Bertozzi, M., Broggi, A.: GOLD: a parallel real-time stereo vision system for generic obstacle and lane detection. IEEE Trans. Image Process. 7 (1), 62–81 (1998). doi:10.1109/83.650851

    Article  Google Scholar 

  6. CMU: Navlab: The carnegie mellon university navigation laboratory. http://www.cs.cmu.edu/afs/cs/project/alv/www/ (2013)

  7. Cohen, L.D.: On active contour models and balloons. CVGIP Image Underst. 53 (2), 211–218 (1991). doi:10.1016/1049-9660(91)90028-N

    Article  MATH  Google Scholar 

  8. Fardi, B., Scheunert, U., Cramer, H., Wanielik, G.: A new approach for lane departure identification. In: Proceedings of the Intelligent Vehicles Symposium, 2003. IEEE, pp. 100–105 (2003)

  9. Funk, N.: A study of the kalman filter applied to visual tracking. University of Alberta (2003)

  10. von Gioi, R.G., Jakubowicz, J., Morel, J.M., Randall, G.: LSD: a fast line segment detector with a false detection control. IEEE Trans. Pattern. Anal. Mach. Intell. 32, 722–732 (2010). doi:10.1109/TPAMI.2008.300

    Article  Google Scholar 

  11. He, Q., Chu, C.H.: Lane detection and tracking through affine rectification. In: Proceedings of the IAPR Conference on Machine Vision Applications, pp. 536–539, Tokyo (2007)

  12. Kalman, R.E., et al.: A new approach to linear filtering and prediction problems. J. Basic Eng. 82 (1), 35–45 (1960)

    Article  Google Scholar 

  13. Kang, D.J., Jung, M.H.: Road lane segmentation using dynamic programming for active safety vehicles. Pattern Recogn. Lett. 24 (16), 3177–3185 (2003)

    Article  Google Scholar 

  14. Kastrinaki, V., Zervakis, M., Kalaitzakis, K.: A survey of video processing techniques for traffic applications. Image Vis. Comput. 21 (4), 359–381 (2003). doi:10.1016/S0262-8856(03)00004-0

    Article  Google Scholar 

  15. Kim, Z.: Robust lane detection and tracking in challenging scenarios. IEEE Trans. Intell. Transp. Syst. 9 (1), 16–26 (2008). doi:10.1109/TITS.2007.908582

    Article  Google Scholar 

  16. Kogecka, J., Zhang, W.: Efficient computation of vanishing points. In: Proceedings of the IEEE International Conference on Robotics and Automation, 2002. ICRA ’02, vol. 1, pp. 223–228 (2002) doi:10.1109/ROBOT.2002.1013365

  17. Kreucher, C., Lakshmanan, S.: LANA: a lane extraction algorithm that uses frequency domain features. IEEE Trans. Robot. Autom. 15 (2), 343–350 (1999). doi:10.1109/70.760356

    Article  Google Scholar 

  18. Lee, S., Kwon, W.: Robust lane keeping from novel sensor fusion. In: Proceedings of the International Conference on Robotics and Automation, ICRA 2001. IEEE, vol. 4, p. 3704–3709 (2001)

  19. Li, H., Shen, T., Smith, M.B., Fujiwara, I., Vavylonis, D., Huang, X.: Automated actin filament segmentation, tracking and tip elongation measurements based on open active contour models. In: IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2009. ISBI ’09, pp. 1302–1305 (2009). doi:10.1109/ISBI.2009.5193303

  20. McCall, J., Trivedi, M.: Video-based lane estimation and tracking for driver assistance: survey, system, and evaluation. IEEE Trans. Int. Transp. Syst. 7 (1), 20–37 (2006). doi:10.1109/TITS.2006.869595

    Article  Google Scholar 

  21. Minagawa, A., Tagawa, N., Moriya, T., Gotoh, T.: Vanishing point and vanishing line estimation with line clustering. IEICE Trans. Inf. Syst. 83 (7), 1574–1582 (2000)

    Google Scholar 

  22. Nieto, M., Arrspide Laborda, J., Salgado L.: Road environment modeling using robust perspective analysis and recursive bayesian segmentation. Mach. Vis. Appl. 22 (6), 927–945 (2011). doi:10.1007/s00138-010-0287-7

    Article  Google Scholar 

  23. Nieto, M., Salgado, L., Jaureguizar, F., Arrospide, J.: Robust multiple lane road modeling based on perspective analysis In: 15th IEEE International Conference on Image Processing, 2008. ICIP 2008, pp. 2396–2399 (2008). doi:10.1109/ICIP.2008.4712275

  24. Sivaraman, S., Trivedi, M.: Integrated lane and vehicle detection, localization, and tracking: A synergistic approach. IEEE Trans. Intell. Trans. Syst. 14 (2), 906–917 (2013). doi:10.1109/TITS.2013.2246835

    Article  Google Scholar 

  25. Tian, M., Liu, F., Zhu, W., Xu, C.: Vision based lane detection for active security in intelligent vehicle. In: IEEE International Conference on Vehicular Electronics and Safety, 2006. ICVES 2006, pp. 507–511 (2006). doi:10.1109/ICVES.2006.371644

  26. Tiilikainen, N.: A comparative study of active contour snakes. Copenhagen University, Danmark (2007)

    Google Scholar 

  27. Wang, Y., Teoh, E.K., Shen, D.: Lane detection using b-snake. In: Proceedings of the 1999 International Conference on Information Intelligence and Systems, 1999, pp. 438–443, (1999). doi:10.1109/ICIIS.1999.810313

  28. Wang, Y., Teoh, E.K., Shen, D.: Lane detection and tracking using b-snake. Image Vis. Comput. 22 (4), 269–280 (2004). doi:10.1016/j.imavis.2003.10.003

    Article  Google Scholar 

  29. Zhou, S., Jiang, Y., Xi, J., Gong, J., Xiong, G., Chen, H.: A novel lane detection based on geometrical model and gabor filter. In: Intelligent Vehicles Symposium (IV), 2010 IEEE, pp. 59–64 (2010). doi:10.1109/ IVS.2010.5548087

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangyang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Fang, X., Wang, C. et al. Lane Detection and Tracking Using a Parallel-snake Approach. J Intell Robot Syst 77, 597–609 (2015). https://doi.org/10.1007/s10846-014-0075-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-014-0075-0

Keywords

Navigation