Skip to main content
Log in

A Cooperative Network Framework for Multi-UAV Guided Ground Ad Hoc Networks

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Cooperative ad hoc networks are becoming very important in various military and civilian applications. The interfacing between different ad hoc networks provides large applications in field of surveillance, navigation, disaster monitoring and homeland security. This paper focuses on implementation of UAV (unmanned aerial vehicles) ad hoc network that forms a guidance system for ground ad hoc network. The network framework proposed in the paper uses neural network to form cognitive and topology maps. Indirect and Bayesian Kalman Filter are used for estimations. These estimations allows updating of pre-constructed cognitive map to form ideal final search map that is shared among all nodes to perform search and track operations. The analysis showed that the proposed framework is capable of forming a search maps that is able to define multiple way points for each UAV in the network to follow a non-redundant path for searching and identifying various user nodes and geographical territories. The effectiveness of the model is demonstrated using simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zang, C., Zang, S.: Mobility prediction clustering algorithm for UAV networking. In: GLOBECOM Workshops. IEEE, pp. 1158–1161 (2011)

  2. Bekmezci, ., Sahingoz, O.K., Temel, .: Flying ad-hoc networks (FANETs): a survey. Ad Hoc Netw. 11(3), 1254–1270 (2013)

  3. Bellur, B., Lewis, M., Templin, F.: An ad-hoc network for teams of autonomous vehicles. In: Proceedings of the First Annual Symposium on Autonomous Intelligence Networks and Systems (2002)

  4. How, J.P., Fraser, C., Kulling, K.C., Bertuccelli, L.F., Toupet, O., Brunet, L., Roy, N.: Increasing autonomy of UAVs, Robotics & Automation Magazine. IEEE 16(2), 43–51 (2009)

    Google Scholar 

  5. Yang, Y., Minai, A., Polycarpou, M.M.: Evidential mapbuilding approaches for multi-UAV cooperative search. In: Proceedings of the American Control Conference, vol. 1, pp. 116 (2005)

  6. Hauert, S., Zufferey, J.C., Floreano, D.: Evolved swarming without positioning information: an application in aerial communication relay. Auton. Robot. 26(1), 21–32 (2009)

    Article  Google Scholar 

  7. Lilien, L., Gupta, A., Kamal, Z.E.: & Yang, Z.: Opportunistic resource utilization networksA new paradigm for specialized ad hoc networks. Comput. Electr. Eng. 36(2), 328–340 (2010)

    Article  MATH  Google Scholar 

  8. Liu, M., Lin, J., Yuan, Y.: Research of UAV cooperative reconnaissance with self-organization path planning. In: International Conference on Computer, Networks and Communication Engineering, ICCNCE, Atlantis Press, pp. 207–213 (2013)

  9. Lilien, L.T., Ben Othmane, L., Angin, P., DeCarlo, A., Salih, R.M., Bhargava, B.: A simulation study of ad hoc networking of UAVs with opportunistic resource utilization networks. J. Netw. Comput. Appl. 38, 3–15 (2013)

    Article  Google Scholar 

  10. Perez, D., Maza, I., Caballero, F., Scarlatti, D., Casado, E., Ollero, A.: A ground control station for a multi-uav surveillance system. J. Intell. Robot. Syst. 69(1-4), 119–130 (2013)

    Article  Google Scholar 

  11. Cevik, P., Kocaman, I., Akgul, A.S., Akca, B.: The small and silent force multiplier: a swarm UAVelectronic attack. J. Intell. & Robot. Syst. 70(1-4), 595–608 (2013)

    Google Scholar 

  12. Gu, D.L., Pei, G., Ly, H., Gerla, M., Zhang, B., Hong, X.: UAV aided intelligent routing for ad-hoc wireless network in single-area theater, Wireless Communications and Networking Confernce, IEEE, vol. 3, pp. 1220–1225 (2000)

  13. Capitn, J., Merino, L., Caballero, F., Ollero, A.: Decentralized delayed-state information filter (DDSIF): A new approach for cooperative decentralized tracking. Robot. Auton. Syst. 59(6), 376–388 (2011)

    Article  Google Scholar 

  14. Dressler, F., Akan, O.B.: A survey on bio-inspired networking. Comput. Netw. 54(6), 881–900 (2010)

    Article  MATH  Google Scholar 

  15. Muller, M.: Flying Ad-Hoc Networks, Institute of Media Informatics Ulm University, pp. 53–59 (2012)

  16. Li, J., Zhou, Y., Lamont, L., Toulgoat, M., Rabbath, C.A.: Packet Delay in UAV Wireless Networks Under Nonsaturated Traffic and Channel Fading Conditions, Wireless Personal Communications, pp. 1–19 (2013)

  17. Yang, Y., Polycarpou, M.M., Minai, A.A.: Multi-UAV cooperative search using an opportunistic learning method. Trans. ASME 129(5), 716 (2007)

    Article  Google Scholar 

  18. Polycarpou, M.M., Yang, Y., Passino, K.M.: A cooperative search framework for distributed agents, Intelligent Control, (ISIC’01). In: Proceedings of the IEEE International Symposium, pp. 1–6 (2001)

  19. Trawny, N., Roumeliotis, S.I.: Indirect Kalman filter for 3D attitude estimation, University of Minnesota, Department Computer Science & Engineering Technical Report, pp. 2 (2005)

  20. Meinhold, R.J., Singpurwalla, N.D.: Understanding the Kalman filter. Am. Stat. 37(2), 123–127 (1983)

    MathSciNet  Google Scholar 

  21. Benini, A.,Mancini, A., Longhi, S.: An IMU/UWB/Visionbased Extended Kalman Filter for Mini-UAV Localization in Indoor Environment using 802.15. 4a Wireless Sensor Network. J. Intell. Robot. Syst. 70(1-4), 461–476 (2013)

    Article  Google Scholar 

  22. Sakhaee, E., Jamalipour, A., Kato, N.: Aeronautical ad hoc networks. Wireless Communications and Networking Conferece, IEEE, pp. 246–251 (2006)

  23. Iordanakis, M., Yannis, D., Karras, K., Bogdos, G., Dilintas, G., Amirfeiz, M., Baiotti, S.: Ad-hoc routing protocol for aeronautical mobile ad-hoc networks. Fifth International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP) (2006)

  24. Paunicka, J.L., Corman, D.E., Mendel, B.R.: A CORBA based middleware solution for UAVs. In: Object-Oriented Real-Time Distributed Computing, ISORC- Proceedings. Fourth IEEE International Symposium, pp. 261–267 (2001)

  25. Palazzi, C.E., Roseti, C., Luglio, M., Gerla, M., Sanadidi, M.Y., Stepanek, J.: Enhancing transport layer capability in HAPSSatellite integrated architecture. Wirel. Pers. Commun. 32(3-4), 339–356 (2005)

    Article  Google Scholar 

  26. Palazzi, C.E., Roseti, C., Luglio, M., Gerla, M., Sanadidi, M.Y., Stepanek, J.: Satellite coverage in urban areas using Unmanned Airborne Vehicles (UAVs). In: Vehicular Technology Conference, IEEE 59th, Vol. 5, pp. 2886–2890 (2004)

  27. Allred, J., Hasan, A.B., Panichsakul, S., Pisano, W., Gray, P., Huang, J., Mohseni, K.: Sensorflock: an airborne wireless sensor network of micro-air vehicles. In: Proceedings of the 5th International Conference on Embedded Networked Sensor Systems (2007)

  28. Ajami, A., Balmat, J.F., Gauthier, J.P., Maillot, T.: Path planning and Ground Control Station simulator for UAV. Aerospace Conference, IEEE, pp. 1–13 (2013)

  29. Craighead, J., Murphy, R., Burke, J., Goldiez, B.: A survey of commercial & open source unmanned vehicle simulators. Robotics and Automation, IEEE International Conference, pp. 852–857 (2007)

  30. Lin, L., Sun, Q., Li, J., Yang, F.: A novel geographic position mobility oriented routing strategy for UAVs. J. Comput. Inf. Syst. 8(2), 709–716 (2012)

    Google Scholar 

  31. Bellur, B., Ogier, R.G.: A reliable, efficient topology broadcast protocol for dynamic networks. In: INFOCOM’99. Eighteenth Annual Joint Conference of the IEEE Computer and Communications Societies, vol. 1, pp. 178–186 (1999)

  32. Rysdyk, R.: UAV path following for constant line-of-sight. In: 2nd AIAA Unmanned Unlimited. Conference and Work shop and Exhibit, San Diego, CA (2003)

  33. Akbas, M.I., Turgut, D.: APAWSAN: Actor positioning for aerial wireless sensor and actor networks. In: Local Computer Networks (LCN), IEEE 36th Conference. pp. 563–570 (2011)

  34. Aggarwal, P., Syed, Z., Niu, X., El-Sheimy, N.: Cost effective testing and calibration of low cost MEMS sensors for integrated positioning, navigation and mapping systems. In: Proceedings of XIII FIG Conference, pp. 8–13 (2006)

  35. Jung, D., Tsiotras, P.: Inertial attitude and position reference system development for a small UAV, AIAA Infotech at aerospace. pp. 7–10 (2007)

  36. Durham, C.M., Andel, T.R., Hopkinson, K.M., Kurkowski, S.H.: Evaluation of an OPNET model for unmanned aerial vehicle (UAV) networks. In: Proceedings of the Spring Simulation Multiconference, pp. 66 (2009)

  37. Morse, B.S., Engh, C.H., Goodrich, M.A.: UAV video coverage quality maps and prioritized indexing for wilderness search and rescue. In: Proceedings of the 5th ACM/IEEE International Conference on Human-robot Interaction, pp. 227–234 (2010)

  38. Lpez, J., Royo, P., Pastor, E., Barrado, C., Santamaria, E.: A middleware architecture for unmanned aircraft avionics. In: Proceedings of the 2007 ACM/IFIP/USENIX International Conference on Middleware Companion. pp. 24 (2007)

  39. Perkins, C.E., Royer, E.M.: Ad-hoc on-demand distance vector routing. In: Mobile Computing Systems and Applications, Proceedings, WMCSA’99, Second IEEE Workshop, pp. 90–100 (1990)

  40. Konishi, K., Maeda, K., Sato, K., Yamasaki, A., Yamaguchi, H., Yasumoto, K., Higashino, T.: Mobireal simulator-evaluating manet applications in real environments. In: 13th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems, pp. 499–502 (2005)

  41. Abdessameud, A., Tayebi, A.: Global trajectory tracking control of VTOL-UAVs without linear velocity measurements. Automatica 46(6), 1053–1059 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  42. Yamasaki, T., Sakaida, H., Enomoto, K., Takano, H., Baba, Y.: Robust trajectory-tracking method for UAV guidance using proportional navigation. In: International Conference on Control, Automation and Systems, ICCAS’07, pp. 1404–1409 (2007)

  43. Zhan, P., Casbeer, D., Swindlehurst, A.L.: A centralized control algorithm for target tracking with UAVs. Conference Record of the 39th Asilomar Conference on Signals, Systems and Computers, pp. 1148–1152 (2005)

  44. Karras, K., Kyritsis, T., Amirfeiz, M., Baiotti, S.: Aeronautical mobile Ad hoc networks, Wireless Conference, EW, 14th European, IEEE, pp. 1–6 (2008)

  45. Miles, J., Kamath, G., Muknahallipatna, S., Stefanovic, M., Kubichek, R.F.: Optimal trajectory determination of a single moving beacon for efficient localization in a mobile ad-hoc network. Ad Hoc Netw. 11(1), 238–256 (2013)

    Article  Google Scholar 

  46. Niculescu, D., Nath, B.: DV based positioning in ad hoc networks. Telecommun. Syst. 22(1–4), 267–280 (2003)

    Article  Google Scholar 

  47. Cetin, O., Zagli, I., Yilmaz, G.: Establishing Obstacle and Collision Free Communication Relay for UAVs with Artificial Potential Fields. J. Intell. Robot. Syst. 69(1-4), 361–372 (2013)

    Article  Google Scholar 

  48. Jensen, A., Chen, Y.: Tracking tagged fish with swarming Unmanned Aerial Vehicles using fractional order potential fields and Kalman filtering. Unmanned Aircraft Systems (ICUAS), International Conference, pp. 1144–1149 (2013)

  49. Valavanis, K.P.: Advances in unmanned aerial vehicles: state of the art and the road to autonomy, vol. 33. Springer (2007)

  50. Rubin, I., Behzad, A., Ju, H.J., Zhang, R., Huang, X., Liu, Y., Khalaf, R.: Ad hoc wireless networks with mobile backbones. In: 15th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC, vol. 1, pp. 566–573 (2004)

  51. Jara, C.A., Candelas, F.A., Gil, P., Torres, F., Esquembre, F., Dormido, S.: Ejs+ EjsRL: An interactive tool for industrial robots simulation, Computer Vision and remote operation. Robot. Auton. Syst. 59(6), 389–401 (2011)

    Article  Google Scholar 

  52. Zhang, G., Yang, K., Liu, P., Feng, X.: Incentive Mechanism for Multiuser Cooperative Relaying in Wireless Ad Hoc Networks: A Resource-Exchange Based Approach, Wireless Personal Communications, pp. 1–19 (2013)

  53. Levin, L., Segal, M., Shpungin, H.: Cooperative data collection in ad hoc networks. Wirel. Netw. 19(2), 145–159 (2013)

    Article  Google Scholar 

  54. Carpenter, G.A., Grossberg, S.: ART 2: Self-organization of stable category recognition codes for analog input patterns. In: Robotics and IECON Conferences, International Society for Optics and Photonics, pp. 272–280 (1988)

  55. Acharya, T., Paul, G.: Maximum Lifetime Broadcast Communications in Cooperative Multihop Wireless Ad Hoc Networks: Centralized and Distributed Approaches. Ad Hoc Netw. 11(6), 1667–1682 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vishal Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, V., Kumar, R. A Cooperative Network Framework for Multi-UAV Guided Ground Ad Hoc Networks. J Intell Robot Syst 77, 629–652 (2015). https://doi.org/10.1007/s10846-014-0091-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-014-0091-0

Keywords

Mathematics Subject Classification (2010)

Navigation