Skip to main content

Advertisement

Log in

Modelling and Control of Hyper-Redundant Micromanipulators for Obstacle Avoidance in an Unstructured Environment

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The complexity of the obstacle avoidance problem in an unstructured environment increases when the task is performed in the micro scale, which necessitates the adoption of novel control techniques for obstacle inference and avoidance. In this article, we introduce a Van der Waals (VdW) force extension to the traditional dynamic micromanipulator model, where every link is decomposed into a series of elementary particles that interact with neighboring objects during the manipulator’s motion. This interaction, along with the inherent nanoscale friction, introduce additive nonlinearities in the model that are compensated through an adaptive positioning control scheme. The estimation of the induced VdW forces are used to derive an approximation of the obstacle’s position, followed by an obstacle avoidance algorithm, which generates a collision free path. Simulation studies on a hyper-redundant micromanipulator are offered to highlight the effectiveness of the proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Argento, C., French, R.: Parametric tip model and force-distance relation for hamaker constant determination from atomic force microscopy. J. Appl. Phys. 80(11), 6081–6090 (1996)

    Article  Google Scholar 

  2. Bilen, H., Unel, M.: Micromanipulation using a microassembly workstation with vision and force sensing. Advanced Intelligent Computing Theories and Applications - with Aspects of Theoretical and Methodological Issues. Lect. Notes Comput. Sci. 5226, 1164–1172 (2008)

    Article  Google Scholar 

  3. Burns, B., Brock, O.: Sampling-based motion planning using predictive models. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation. ICRA 2005, 3120–3125 (2005)

    Google Scholar 

  4. Chen, Y., Vidyasagar, M.: Optimal control of robotic manipulators in the presence of obstacles. J. Robot. Syst. 7(5), 721–740 (1990)

    Article  MATH  Google Scholar 

  5. Cheung, E., Lumelsky, V.: Motion planning for robot arm manipulators with proximity sensing. In: Proceedings International Conference On Robotics and Automation, Philadelphia, Pennsylvania, pp. 740–745 (1988)

  6. Colbaugh, R., Seraji, H., Glass, K.: Obstacle avoidance for redundant robots using configuration control. J. Robot. Syst. 6(6), 721–744 (1989)

    Article  MATH  Google Scholar 

  7. Frank, B., Stachniss, C., Abdo, N., Burgard, W.: Efficient motion planning for manipulation robots in environments with deformable objects. In: IEEE/RSJ International Conference on Intelligent RObots and Systems(IROS), pp. 2180–2185 (2011)

  8. Fratu, M., Fratu, A.: Collision avoidance control using null space criteria. RECENT 13(1(34)), 51–54 (2012)

    Google Scholar 

  9. Glass, K., Colbaugh, R., Lim, D., Seraji, H.: Realtime collision avoidance for redundant manipulators. IEEE Trans. Robot. Autom. 11(3), 448–457 (1995)

    Article  Google Scholar 

  10. Guo, Z., Hsia, T.: Joint trajectory generation for redundant robots in an environment with obstacles. J. Robot. Syst. 10(2), 119–215 (1993)

    Article  Google Scholar 

  11. Hahn, B., Oldham, K.: On-off iterative adaptive controller for low-power micro-robotic step regulation. Asian J. Control 14(3), 624–640 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hamaker, H.: The london-van der waals attraction between spherical particles. Physica IV(10), 1058–1072 (1937)

    Article  Google Scholar 

  13. Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. Int. J. Robot. Res. 5, 90–98 (1986)

    Article  Google Scholar 

  14. Kim, J., Khosla, P.: Real-time obstacle avoidance using harmonic potential functions. IEEE Trans. Robot. Autom. 8(3), 338–349 (1992)

    Article  Google Scholar 

  15. Maciejewski, A., Klein, C.: Obstacle avoidance for kinematically redundant manipulators in dynamically varying environments. Int. J. Robot. Res. 4, 109–117 (1985)

    Article  Google Scholar 

  16. Nemec, B., žlajpah, L., Omrčen, D.: Stability of null-space control algorithms. In: Proceedings of RAAD’03, 12th International Workshop on Robotics in Alpe-Adria-Danube Region (2003)

  17. Jamisola, R.S., J., Maciejewski, A., Roberts, R.: A path planning strategy for kinematically redundant manipulators anticipating joint failures in the presence of obstacles. In: Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas, Nevada Vol. 1, pp. 142–148 (2003)

  18. Sage, H., DeMathelin, M., Ostertag, E.: Robust control of robot manipulators: a survey. Int. J. Control 72(16), 1498–1522 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  19. Sastry, S., Bodson, M.: Adaptive control: Stability, Convergence, and Robustness. Englewood Cliffs, Prentice Hall (1989)

    MATH  Google Scholar 

  20. Seraji, H., Bon, B.: Real-time collision avoidance for position-controlled manipulators. IEEE Trans. Robot. Autom. 15(4), 670–677 (1999)

    Article  Google Scholar 

  21. Siciliano, B., Villani, L.: Robot force control, The Kluwer International Series in Engineering and Computer Science. vol. 540. Kluwer Academic Publishers, Boston (2000)

    Google Scholar 

  22. Slotine, J.J., Li, W.: On the adaptive control of robot manipulators. Int. J. Robot. Reaserch 6(3), 49–59 (1987)

    Article  Google Scholar 

  23. Slotine, J.J., Li, W.: Composite adaptive control of robot manipulators. Automatica 25, 509–519 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  24. Slotine, J.J., Li, W.: Applied Nonlinear Control. Prentice-Hall International Editions (1991)

  25. Tambe, N.S., Bhushan, B.: Friction model for the velocity dependence of nanoscale friction. Nanotechnology 16(10), 2309–2324 (2005)

    Article  Google Scholar 

  26. Tsianos, K., Sucan, I., Kavraki, L.: Sampling-based robot motion planning:towards realistic applications. Comput. Sci. Rev. 1(1), 2–11 (2007)

    Article  Google Scholar 

  27. Tsoukalas, A., Tzes, A.: Modelling and adaptive control of nanowire-driven micromanipulators. J. Intell. & Robot. Syst. 62(3–4), 419–450 (2011)

    Article  MATH  Google Scholar 

  28. žlajpah, L., Nemec, B.: Kinematic control algorithms for on-line obstacle avoidance for redundant manipulators. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 2, pp 1898–1903 (2002)

  29. Xie, H., Patel, R., Kalaycioglu, S., Asmer, H.: Realtime collision avoidance for a redundant manipulator in an unstructured environment. In: Proceedings International Conference On Intelligent Robots and Systems IROS’98, Victoria, Canada 32(2), 1925–1930 (1998)

  30. Zhang, W., Sobh, T.M.: Obstacle avoidance for manipulators. J. Syst. Anal. Model, Simul. 43, 67–74 (2003)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athanasios Tsoukalas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsoukalas, A., Tzes, A. Modelling and Control of Hyper-Redundant Micromanipulators for Obstacle Avoidance in an Unstructured Environment. J Intell Robot Syst 78, 517–528 (2015). https://doi.org/10.1007/s10846-014-0102-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-014-0102-1

Keywords

Profiles

  1. Anthony Tzes