Skip to main content
Log in

Integrating BIM and LiDAR for Real-Time Construction Quality Control

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

In the construction process, real-time quality control and early defects detection are still the most significant approach to reducing project schedule and cost overrun. Current approaches for quality control on construction sites are time-consuming and ineffective since they only provide data at specific locations and times to represent the work in place, which limit a quality manager’s abilities to easily identify and manage defects. The purpose of this paper is to develop an integrated system of Building Information Modelling (BIM) and Light Detection and Ranging (LiDAR) to come up with real-time onsite quality information collecting and processing for construction quality control. Three major research activities were carried out systematically, namely, literature review and investigation, system development and system evaluation. The proposed BIM and LiDAR-based construction quality control system were discussed in five sections: LiDAR-based real-time tracking system, BIM-based real-time checking system, quality control system, point cloud coordinate transformation system, and data processing system. Then, the system prototype was developed for demonstrating the functions of flight path control and real-time construction quality deviation analysis. Finally, three case studies or pilot projects were selected to evaluate the developed system. The results show that the system is able to efficiently identify potential construction defects and support real-time quality control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akinci, B., Boukamp, F., Gordon, C., Huber, D., Lyons, C., Park, K.: A formalism for utilization of sensor systems and integrated project models for active construction quality control. Autom. Constr. 15 (2), 124–138 (2006)

    Article  Google Scholar 

  2. Dong, A., Maher, M.L., Kim, M.J., Gu, N., Wang, X.: Construction defect management using a telematic digital workbench. Autom. Constr. 18 (6), 814–824 (2009)

    Article  Google Scholar 

  3. Patterson, L., Ledbetter, W.: The cost of quality: A management tool. Excellence in the Constructed Project, ASCE (1989)

  4. Josephson, P.-E., Hammarlund, Y.: The causes and costs of defects in construction: A study of seven building projects. Autom. Constr. 8 (6), 681–687 (1999)

    Article  Google Scholar 

  5. Tang, P., Anil, E., Akinci, B., Huber, D.: Efficient and Effective Quality Assessment of As-Is Building Information Models and 3D Laser-Scanned Data. Computing in Civil Engineering (2011). Am. Soc. Civ. Eng., 486–493 (2011)

  6. Becerik-Gerber, B., Jazizadeh, F., Li, N., Calis, G.: Application Areas and Data Requirements for BIM-Enabled Facilities Management. J. Constr. Eng. Manag. 138 (3), 431–442 (2012)

    Article  Google Scholar 

  7. Cheng Shuang Sun, Q. C.: BIM-Based Real-Time Monitoring of the Equipment Maintenance of Property. Appl. Mech. Mater. 226-228, 2217–2221 (2012). (Vibration, Structural Engineering and Measurement II)

    Article  Google Scholar 

  8. Wang, X., Love, P.E.D., Kim, M.J., Park, C.-S., Sing, C.-P., Hou, L.: A conceptual framework for integrating building information modeling with augmented reality. Autom. Constr. 34, 37–44 (2012)

    Article  Google Scholar 

  9. Motawa, I., Almarshad, A.: A knowledge-based BIM system for building maintenance. Autom. Constr. 29, 173–182 (2013)

    Article  Google Scholar 

  10. Gamba, P., Houshmand, B.: Digital surface models and building extraction: a comparison of IFSAR and LIDAR data. Geoscience and Remote Sensing. IEEE Trans. 38(4), 1959–1968 (2000)

    Google Scholar 

  11. Priestnall, G., Jaafar, J., Duncan, A.: Extracting urban features from LiDAR digital surface models. Comput. Environ. Urban. Syst. 24(2), 65–78 (2000)

    Article  Google Scholar 

  12. Rottensteiner, F., Briese, C.: Automatic generation of building models from LIDAR data and the integration of aerial images. International Archives of the Photogrammetry. Remote. Sens. Spat. Inf. Sci. ISPRS 34 (3/W13), 174–180 (2003)

    Google Scholar 

  13. Anil, E.B., Tang, P., Akinci, B., Huber, D.: Deviation analysis method for the assessment of the quality of the as-is Building Information Models generated from point cloud data. Autom. Constr. 35, 507–516 (2013)

    Article  Google Scholar 

  14. Arditi, D., Gunaydin, H.M.: Total quality management in the construction process. Int. J. Proj. Manag. 15(4), 235–243 (1997)

    Article  Google Scholar 

  15. Hung, R.Y.-Y., Lien, B.Y.-H., Fang, S.-C., McLean, G.N.: Knowledge as a facilitator for enhancing innovation performance through total quality management. Total Qual. Manag. 21(4), 425–438 (2010)

    Article  Google Scholar 

  16. Battikha, M.: QUALICON: Computer-Based System for Construction Quality Management. J. Constr. Eng. Manag. 128(2), 164–173 (2002)

    Article  Google Scholar 

  17. Wang, L.-C.: Enhancing construction quality inspection and management using RFID technology. Autom. Constr. 17(4), 467–479 (2008)

    Article  Google Scholar 

  18. Zhong, D., Cui, B., Liu, D., Tong, D.: Theoretical research on construction quality real-time monitoring and system integration of core rockfill dam. Sci. China. Ser. E: Technol. Sci. 52(11), 3406–3412 (2009)

    Article  Google Scholar 

  19. Boukamp, F., Akinci, B.: Automated processing of construction specifications to support inspection and quality control. Autom. Constr. 17(1), 90–106 (2007)

    Article  Google Scholar 

  20. Navon, R.: Process and quality control with a video camera, for a floor-tilling robot. Autom. Constr. 10(1), 113–125 (2000)

    Article  Google Scholar 

  21. Navon, R.: Automated project performance control of construction projects. Autom. Constr. 14(4), 467–476 (2005)

    Article  Google Scholar 

  22. Leung, S.-W., Mak, S., Lee, B.L.: Using a real-time integrated communication system to monitor the progress and quality of construction works. Autom. Constr. 17(6), 749–757 (2008)

    Article  Google Scholar 

  23. Becerik-Gerber, B., Jazizadeh, F., Kavulya, G., Calis, G.: Assessment of target types and layouts in 3D laser scanning for registration accuracy. Autom. Constr. 20(5), 649–658 (2011)

    Article  Google Scholar 

  24. Xiong, X., Adan, A., Akinci, B., Huber, D.: Automatic creation of semantically rich 3D building models from laser scanner data. Autom. Constr. 31, 325–337 (2013)

    Article  Google Scholar 

  25. Brilakis, I., Lourakis, M., Sacks, R., Savarese, S., Christodoulou, S., Teizer, J., Makhmalbaf, A.: Toward automated generation of parametric BIMs based on hybrid video and laser scanning data. Adv. Eng. Inform. 24(4), 456–465 (2010)

    Article  Google Scholar 

  26. Bosche, F., Haas, C., Akinci, B.: Automated Recognition of 3D CAD Objects in Site Laser Scans for Project 3D Status Visualization and Performance Control. J. Comput. Civ. Eng. 23(6), 311–318 (2009)

    Article  Google Scholar 

  27. Li, S., Isele, J., Bretthauer, G.: Proposed Methodology for Generation of Building Information Model with Laserscanning. Tsinghua Sci. Technol. 13, Suppl. 1, 138–144 (2008)

    Article  MATH  Google Scholar 

  28. Mill, T., Alt, A., Liias, R.: Combined 3D building surveying techniques–terrestrial laser scanning (TLS) and total station surveying for BIM data management purposes. J. Civ. Eng. Manag.(ahead-of-print), 1–10 (2013)

  29. Murphy, M., McGovern, E., Pavia, S.: Historic Building Information Modelling – Adding intelligence to laser and image based surveys of European classical architecture. ISPRS J. Photogramm. Remote. Sens. 76, 89–102 (2013)

  30. Bosché, F.: Plane-based registration of construction laser scans with 3D/4D building models. Adv. Eng. Inform. 26(1), 90–102 (2012)

    Article  Google Scholar 

  31. Tang, P., Akinci, B.: Formalization of workflows for extracting bridge surveying goals from laser-scanned data. Autom. Constr. 22, 306–319 (2012)

    Article  Google Scholar 

  32. Bosché, F.: Automated recognition of 3D CAD model objects in laser scans and calculation of as-built dimensions for dimensional compliance control in construction. Adv. Eng. Inform. 24(1), 107–118 (2010)

    Article  Google Scholar 

  33. Keqi, Z., Jianhua, Y., Shu-Ching, C.: Automatic Construction of Building Footprints From Airborne LIDAR Data. Geoscience and Remote Sensing. IEEE Trans. 44(9), 2523–2533 (2006)

    Google Scholar 

  34. Rottensteiner, F.: IEEE Comput. Graph. Appl. 23(6), 42–50 (2003)

    Article  Google Scholar 

  35. Awrangjeb, M., Zhang, C., Fraser, C.S.: Automatic extraction of building roofs using LIDAR data and multispectral imagery. ISPRS J. Photogramm. Remote. Sens. 83, 1–18 (2013)

    Article  Google Scholar 

  36. Niemeyer, J., Rottensteiner, F., Soergel, U.: Contextual classification of lidar data and building object detection in urban areas. ISPRS J. Photogramm. Remote. Sens. 87, 152–165 (2014)

    Article  Google Scholar 

  37. Palmer, T.C., Shan, J.: Comparative study on urban visualization using LIDAR data in GIS. URISA J. 14(2), 19–25 (2002)

    Google Scholar 

  38. Omasa, K., Hosoi, F., Uenishi, T., Shimizu, Y., Akiyama, Y.: Three-dimensional modeling of an urban park and trees by combined airborne and portable on-ground scanning LIDAR remote sensing. Environ. Model. Assess. 13(4), 473–481 (2008)

    Article  Google Scholar 

  39. Hinks, T., Carr, H., Laefer, D.F.: Flight optimization algorithms for aerial LiDAR capture for urban infrastructure model generation. J. Comput. Civ. Eng. 23(6), 330–339 (2009)

    Article  Google Scholar 

  40. Blaikie, N.: Designing Social Research: The Logic of Anticipation. Polity, UK (2009)

  41. Alexis, K., Nikolakopoulos, G., Tzes, A.: Switching model predictive attitude control for a quadrotor helicopter subject to atmospheric disturbances. Control. Eng. Pract. 19(10), 1195–1207 (2011)

    Article  Google Scholar 

  42. Dierks, T., Jagannathan, S.: Output feedback control of a quadrotor UAV using neural networks. Neural Netw., IEEE Trans. 21(1), 50–66 (2010)

    Article  Google Scholar 

  43. Das, A., Lewis, F., Subbarao, K.: Backstepping approach for controlling a quadrotor using lagrange form dynamics. J. Intell. Robot. Syst. 56(1-2), 127–151 (2009)

    Article  MATH  Google Scholar 

  44. Cowling, I.D., Yakimenko, O.A., Whidborne, J.F., Cooke, A.K.: Direct method based control system for an autonomous quadrotor. J. Intell. Robot. Syst. 60(2), 285–316 (2010)

    Article  MATH  Google Scholar 

  45. Raffo, G.V., Ortega, M.G., Rubio, F.R.: An integral predictive/nonlinear H\(\infty \) control structure for a quadrotor helicopter. Automatica 46(1), 29–39 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  46. Hoffmann, G.M., Huang, H., Waslander, S.L., Tomlin, C.J.: Precision flight control for a multi-vehicle quadrotor helicopter testbed. Control. Eng. Pract. 19(9), 1023–1036 (2011)

    Article  Google Scholar 

  47. Abdolhosseini, M., Zhang, Y., Rabbath, C.A.: An Efficient Model Predictive Control Scheme for an Unmanned Quadrotor Helicopter. J. Intell. Robot. Syst. 70(1-4), 27–38 (2013)

    Article  Google Scholar 

  48. Nagaty, A., Saeedi, S., Thibault, C., Seto, M., Li, H.: Control and Navigation Framework for Quadrotor Helicopters. J. Intell. Robot. Syst. 70(1-4), 1–12 (2012)

    Article  Google Scholar 

  49. Hu, W., Guo, S.: Visualization and Collaboration of On-Site Environments Based on Building Information Model for Construction Project Class. Inf. Manag. Eng., 288–295 (2011). Springer

  50. Wang, X.: BIM Handbook: A guide to Building Information Modeling for owners, managers, designers, engineers and contractors [Book Review]. Australasian Journal of Construction Economics and Building 12(3), 101 (2012)

    Article  Google Scholar 

  51. Chen, H.-T., Wu, S.-W., Hsieh, S.-H.: Visualization of CCTV coverage in public building space using BIM technology. Visualization in Engineering 1(1), 1–17 (2013)

    Article  MATH  Google Scholar 

  52. Zhu, Z., Donia, S.: Spatial and visual data fusion for capturing, retrieval, and modeling of as-built building geometry and features. Visualization in Engineering 1(1), 10 (2013)

    Article  Google Scholar 

  53. Azhar, S., Carlton, W.A., Olsen, D., Ahmad, I.: Building information modeling for sustainable design and LEED® rating analysis. Autom. Constr. 20(2), 217–224 (2011)

    Article  Google Scholar 

  54. Kim, H., Stumpf, A., Kim, W.: Analysis of an energy efficient building design through data mining approach. Autom. Constr. 20(1), 37–43 (2011)

    Article  Google Scholar 

  55. Alwisy, A., Al-Hussein, M., Al-Jibouri, S.: BIM Approach for Automated Drafting and Design for Modular Construction Manufacturing. Comput. Civ. Eng., 221–228 (2012)

  56. Di Mascio, D., Wang, X.: Building Information Modelling (BIM)-Supported Cooperative Design in Sustainable Renovation Projects. Cooperative Design, Visualization, and Engineering, 205–212 (2013). Springer

  57. Li, H., Huang, T., Kong, C., Guo, H., Baldwin, A., Chan, N., Wong, J.: Integrating design and construction through virtual prototyping. Autom. Constr. 17(8), 915–922 (2008)

    Article  Google Scholar 

  58. Park, C.-S., Lee, D.-Y., Kwon, O.-S., Wang, X.: A framework for proactive construction defect management using BIM, augmented reality and ontology-based data collection template. Autom. Constr. 33, 61–71 (2013)

    Article  Google Scholar 

  59. Siu, M.-F.F., Lu, M., AbouRizk, S.: Combining photogrammetry and robotic total stations to obtain dimensional measurements of temporary facilities in construction field. Visualization in Engineering 1 (1), 1–15 (2013)

    Article  Google Scholar 

  60. Yang, C.-E., Lin, J.J.-C., Hung, W.-H., Kang, S.-C.: Accessibility Evaluation System for Site Layout Planning-A Tractor Trailer Example. Visualization in Engineering 1(1), 12 (2013)

    Article  Google Scholar 

  61. Wang, Y., Wang, X., Wang, J., Yung, P., Jun, G.: Engagement of Facilities Management in Design Stage through BIM: Framework and a Case Study. Advances in Civil Engineering (2013)

  62. Son, S., Park, H., Lee, K.H.: Automated laser scanning system for reverse engineering and inspection. Int. J. Mach. Tools Manuf. 42(8), 889–897 (2002)

    Article  Google Scholar 

  63. Kase, K., Makinouchi, A., Nakagawa, T., Suzuki, H., Kimura, F.: Shape error evaluation method of free-form surfaces. Comput. Aided Des. 31(8), 495–505 (1999)

    Article  MATH  Google Scholar 

  64. Choi, W., Kurfess, T.R.: Dimensional measurement data analysis, part 1: a zone fitting algorithm. J. Manuf. Sci. Eng. 121(2), 238–245 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangyu Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Sun, W., Shou, W. et al. Integrating BIM and LiDAR for Real-Time Construction Quality Control. J Intell Robot Syst 79, 417–432 (2015). https://doi.org/10.1007/s10846-014-0116-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-014-0116-8

Keywords

Navigation