Abstract
Current technologies provide state of the art services but, at the same time, increase data exposure, mainly due to Internet-based applications. In view of this scenario, improved authentication mechanisms are needed. Keystroke dynamics, which recognizes users by their typing rhythm, is a cost-effective alternative. This technology usually only requires a common keyboard in order to acquire authentication data. There are several studies investigating the use of machine learning techniques for user authentication based on keystroke dynamics. However, the majority of them assume a scenario which the user model is not updated. It is known that typing rhythm changes over time (concept drift). Consequently, classification algorithms in keystroke dynamics have to be able to adapt the user model to these changes. This paper evaluates adaptation methods for an immune positive selection algorithm in a data stream context. Experimental results showed that they improved classification performance, mainly for false rejection rates.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Bartlow, N., Cukic, B.: Evaluating the reliability of credential hardening through keystroke dynamics. In: 17th International Symposium on Software Reliability Engineering, 2006. ISSRE ’06, pp. 117–126. IEEE (2006)
de Castro, L.N., Timmis, J.: Artificial Immune Systems: A New Computational Intelligence Approach. Springer (2002)
Crawford, H.: Keystroke dynamics: Characteristics and opportunities. In: 2010 Eighth Annual International Conference on Privacy Security and Trust (PST), pp. 205–212 (2010)
Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res, 1–30 (2006)
Freni, B., Marcialis, G., Roli, F.: Replacement algorithms for fingerprint template update. In: Campilho, A., Kamel, M. (eds.) Image Analysis and Recognition, Lecture Notes in Computer Science, vol. 5112, pp. 884–893. Springer, Berlin Heidelberg (2008)
Gaines, R., Lisowski, W., Press, S., Shapiro, N.: Authentication by keystroke timing: Some preliminary results, technical report. Tech. rep., Rand Corporation (1980)
Giot, R., Dorizzi, B., Rosenberger, C.: Analysis of template update strategies for keystroke dynamics. In: 2011 IEEE Workshop on Computational Intelligence in Biometrics and Identity Management (CIBIM), pp. 21–28. IEEE (2011)
Giot, R., El-Abed, M., Hemery, B., Rosenberger, C.: Unconstrained keystroke dynamics authentication with shared secret. Comput. Secur. 30(6–7), 27–445 (2011)
Giot, R., El-Abed, M., Rosenberger, C.: Greyc keystroke: A benchmark for keystroke dynamics biometric systems. In: IEEE International Conference on Biometrics: Theory, Applications and Systems (BTAS 2009), pp. 419–424. IEEE Computer Society, Washington, DC (2009)
Giot, R., El-Abed, M., Rosenberger, C.: Web-based benchmark for keystroke dynamics biometric systems: A statistical analysis. In: 2012 Eighth International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP), pp. 11–15 (2012)
Giot, R., Rosenberger, C., Dorizz, B.: Can chronological information be used as a soft biometric in keystroke dynamics?. In: 2012 Eighth International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP), pp. 7–10 (2012)
Giot, R., Rosenberger, C., Dorizzi, B.: Hybrid template update system for unimodal biometric systems. In: 2012 IEEE Fifth International Conference on Biometrics: Theory, Applications and Systems (BTAS), pp. 1–7 (2012)
Giot, R., Rosenberger, C., Dorizzi, B.: Performance evaluation of biometric template update. In: International Biometric Performance Testing Conference, pp. 1–4 (2012)
Hosseinzadeh, D., Krishnan, S.: Gaussian mixture modeling of keystroke patterns for biometric applications. IEEE Trans. Syst. Man Cybern. Part C: Appl. Rev. 38(6), 816–826 (2008)
Kang, P., Hwang, S.s., Cho, S. In: Lee, S.W., Li, S. (eds.) Continual retraining of keystroke dynamics based authenticator, vol. 4642, pp. 1203–1211. Springer, Berlin /Heidelberg (2007)
Killourhy, K., Maxion, R.: Why did my detector do that?! predicting keystroke-dynamics error rates. In: Jha, S., Sommer, R., Kreibich, C. (eds.) Recent Advances in Intrusion Detection, Lecture Notes in Computer Science, vol. 6307, pp. 256–276. Springer, Berlin / Heidelberg (2010)
Magalhaes, S.T., Revett, K., Santos, H.M.D.: Password secured sites: Stepping forward with keystroke dynamics. In: Proceedings of the International Conference on Next Generation Web Services Practices, NWESP ’05, p 293. IEEE Computer Society (2005), doi:10.1109/NWESP.2005.62
Martono, W., Ali, H., Salami, M.J.E.: Keystroke pressure-based typing biometrics authentication system using support vector machines. In: Proceedings of the 2007 International Conference on Computational Science and Its Applications -Volume Part II, ICCSA’07, pp. 85–93. Springer, Berlin, Heidelberg (2007)
Messerman, A., Mustafic, T., Camtepe, S., Albayrak, S.: Continuous and non-intrusive identity verification in real-time environments based on free-text keystroke dynamics. In: 2011 International Joint Conference on Biometrics (IJCB), pp. 1–8 (2011)
Peacock, A., Ke, X., Wilkerson, M.: Typing patterns: A key to user identification. IEEE Secur. Priv. 2(5), 40–47 (2004)
Pisani, P.H.: Algoritmos imunológicos aplicados na detecção de intrusões com dinâmica da digitação. Master’s thesis, Universidade Federal do ABC (2012)
Pisani, P.H., Lorena, A.C.: A systematic review on keystroke dynamics. J. Braz. Comput. Soc. 19(4), 573–587 (2013)
Pisani, P.H., Lorena, A.C., de Leon Ferreira de Carvalho, A.C.P.: Algoritmos imunológicos adaptativos em dinâmica da digitação: um contexto de fluxo de dados. In: Anais do X Encontro Nacional de Inteligṅcia Artificial e Computacional - ENIAC (2013)
Rattani, A., Marcialis, G., Roli, F.: Self adaptive systems: An experimental analysis of the performance over time. In: 2011 IEEE Workshop on Computational Intelligence in Biometrics and Identity Management (CIBIM), pp. 36–43 (2011), doi:10.1109/CIBIM.2011.5949222
Roli, F., Didaci, L., Marcialis, G.: Adaptive biometric systems that can improve with use. In: Ratha, N., Govindaraju, V. (eds.) Advances in Biometrics, pp. 447–471. Springer, London (2008)
Roli, F., Marcialis, G.: Semi-supervised pca-based face recognition using self-training. In: Yeung, D.Y., Kwok, J., Fred, A., Roli, F., Ridder D. (eds.) Structural, Syntactic, and Statistical Pattern Recognition, Lecture Notes in Computer Science, vol. 4109, pp. 560–568. Springer, Berlin Heidelberg (2006)
Scheidat, T., Makrushin, A., Vielhauer, C.: Automatic template update strategies for biometrics. Tech. rep., Otto-von-Guericke University of Magdeburg, Germany (2007)
Stibor, T., Timmis, J.: Is negative selection appropriate for anomaly detection. ACM GECCO, 321–328 (2005)
Tan, P.N., Steinbach, M., Kumar, V.: Introduction to Data Mining. Pearson Education (2006)
Teh, P.S., Teoh, A.B.J., Yue, S.: A survey of keystroke dynamics biometrics. Sci. World J., 1–24 (2013). doi:10.1155/2013/408280
Yu, E., Cho, S. In: Liu, J., Cheung, Y.m., Yin, H. (eds.) : Novelty detection approach for keystroke dynamics identity verification, vol. 2690, pp. 1016–1023. Springer, Berlin / Heidelberg (2003)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Pisani, P.H., Lorena, A.C. & de Carvalho, A.C.P.L.F. Adaptive Positive Selection for Keystroke Dynamics. J Intell Robot Syst 80 (Suppl 1), 277–293 (2015). https://doi.org/10.1007/s10846-014-0148-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10846-014-0148-0