Skip to main content
Log in

An Extended Evaluation of Open Source Surface Reconstruction Software for Robotic Applications

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Polygonal surface reconstruction is a growing field of interest in mobile robotics. Recently, several open source surface reconstruction software packages have become publicly available. This paper presents an extensive evaluation of several of such packages, with emphasis on their usability in robotic applications. The main aspects of the evaluation are run time, accuracy and topological correctness of the generated polygon meshes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amenta, N., Choi, S., Kolluri, R.K.: The power crust. In: Proceedings of the 6th ACM Symposium on Solid Modeling and Applications (SMA ’01), pp. 249–266. ACM, NY, USA (2001)

    Google Scholar 

  2. Arya, S., Mount, D.M., Netanyahu, N.S., Silverman, R., Wu, A.Y.: An optimal algorithm for approximate nearest neighbor searching fixed dimensions. J. ACM 45(6), 891–923 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  3. Barber, C.B., Dobkin, D.P., Huhdanpaa, H.: The quickhull algorithm for convex hulls. ACM Trans. Math. Softw. 22(4), 469–483 (1996) http://www.qhull.org

    Article  MATH  MathSciNet  Google Scholar 

  4. Berkmann, J., Caelli, T.: Computation of surface geometry and segmentation using covariance techniques. IEEE Trans. Pattern Anal. Mach. Intell. 16(11), 1114–1116 (1994)

    Article  Google Scholar 

  5. Bernardini, F., Mittleman, J., Rushmeier, H., Silva, C., Taubin, G.: The ball-pivoting algorithm for surface reconstruction. IEEE Trans. Vis. Comput. Graph. 5(4), 349–359 (1999)

    Article  Google Scholar 

  6. Cazals, F., Giesen, J.: Delaunay triangulation based surface reconstruction: Ideas and algorithms. In: Effective Computational Geometry for Curves and Surfaces, pp. 231–273. Springer (2006)

  7. CGAL: Computational Geometry Algorithms Library (2012). http://www.cgal.org

  8. Cignoni, P., Corsini, M., Ranzuglia, G.: Meshlab: an open-source 3d mesh processing system. ERCIM News 73, 45–46 (2008) http://meshlab.sourceforge.net

    Google Scholar 

  9. Connor, M., Kumar, P.: Fast construction of k-nearest neighbor graphs for point clouds. IEEE Trans. Vis. Comput. Graph. 16(4), 599–608 (2010)

    Article  Google Scholar 

  10. Elseberg, J., Magnenat, S., Siegwart, R., Nüchter, A.: Comparison of nearest-neighbor-search strategies and implementations for efficient shape registration. J. Softw. Eng. Robot. (JOSER) 3(1), 2–12 (2012)

    Google Scholar 

  11. Garland, M., Heckbert, P.: Surface simplification using quadric error metrics. In: Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’97), pp. 209–216. ACM Press/Addison-Wesley Publishing Co. (1997)

  12. Van Gelder, A., Wilhelms, J.: Topological considerations in isosurface generation. ACM Trans. Graph. 13(4), 337–375 (1994)

    Article  Google Scholar 

  13. Girardeau-Montaut, D., Roux, M., Marc, R., Thibault, G.: Change Detection on Points Cloud Data acquired with a Ground Laser Scanner. In: ISPRS Workshop Laser Scanning (2005). http://www.danielgm.net/cc

  14. Guennebaud, G., Gross, M.: Algebraic point set surfaces. In: ACM SIGGRAPH 2007 papers (2007)

  15. Edelsbrunner, H., Mücke, E.P.: Three-Dimensional Alpha Shapes. ACM Trans. Graph. 13, 43–72 (1994)

    Article  MATH  Google Scholar 

  16. Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., Stuetzle, W.: Surface reconstruction from unorganized points. Comput. Graph. 26(2) (1992)

  17. Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., Stuetzle, W.: Mesh optimization. In: Proceedings of the 20th annual conference on Computer graphics and interactive techniques, SIGGRAPH ’93, pp. 19–26. ACM (1993)

  18. Hornung, A., Wurm, K.M., Bennewitz, M., Stachniss, C., Burgard, W.: OctoMap: An efficient probabilistic 3D mapping framework based on octrees. Autonomous Robots (2013)

  19. Izadi, S., Newcombe, R.A., Kim, D., Hilliges, O., Molyneaux, D., Hodges, S., Kohli, P., Shotton, J., Davison, A.J., Fitzgibbon, A.: Kinectfusion: Real-time dynamic 3d surface reconstruction and interaction. In: ACM SIGGRAPH 2011 Talks (SIGGRAPH ’11). ACM (2011)

  20. Kazhdan, M., Bolitho, M., Hoppe, H.: Poisson surface reconstruction. In: Proceedings of the 4th Eurographics Symposium on Geometry Processing (SGP ’06), pp. 61–70. Eurographics Association (2006)

  21. Kobbelt, L.P., Botsch, M., Schwanecke, U., Seidel, H.P.: Feature sensitive surface extraction from volume data. In: Proceedings of the 28th annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’01), pp. 57–66. ACM, NY, USA (2001)

  22. Levin, D.: The approximation power of moving least-squares. Math. Comput. 67(224), 1517–1531 (1998)

    Article  MATH  Google Scholar 

  23. Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3D surface construction algorithm. In: ACM SIGGRAPH (1987)

  24. M. Connor, P.K.: The simple, thread-safe approximate nearest neighbor (stann) c++ library (2010). https://sites.google.com/a/compgeom.com/stann/

  25. Magnenat, S.: libnabo (2012). https://github.com/ethz-asl/libnabo

  26. Mount, D.M., Arya, S.: Ann: a library for approximate nearest neighbor searching (2010). http://www.cs.umd.edu/mount/ANN

  27. Muja, M.: Fast library for approximate nearest neighbor (2012). https://github.com/mariusmuja/flann

  28. Muja, M., Lowe, D.G.: Fast approximate nearest neighbors with automatic algorithm configuration. In: International Conference on Computer Vision Theory and Application VISSAPP’09), pp. 331–340. INSTICC Press (2009)

  29. C++ header-only fork of the flann library for approximate nearest neighbors (2012). http://code.google.com/p/nanoflann/

  30. Newman, T.S., Yi, H.: A survey of the marching cubes algorithm. Comput. Graph. 30(5) (2006)

  31. Nüchter, A., et al.: 3DTK – The 3D Toolkit (2014). http://slam6d.sourceforge.net/

  32. Öztireli, A.C., Guennebaud, G., Gross, M.: Feature preserving point set surfaces based on non-linear kernel regression. Comput. Graph. Forum 28(2) (2009)

  33. Park, S., Lee, S., Kim, J.: A surface reconstruction algorithm using weighted alpha shapes. In: Wang, L., Jin, Y. (eds.) Fuzzy Systems and Knowledge Discovery, Lecture Notes in Computer Science, vol. 3613, pp 1141–1150. Springer, Berlin Heidelberg (2005), doi:10.1007/11539506_143

    Google Scholar 

  34. Payne, B.A., Toga, A.W.: Medical imaging: surface mapping brain function on 3d models. IEEE Compututer Graphics and Applications 10(5), 33–41 (1990)

    Article  Google Scholar 

  35. Rinnewitz, K.O., Wiemann, T., Lingemann, K., Hertzberg, J.: Automatic creation and application of texture patterns to 3d polygon maps. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp 3691–3696 (2013), doi:10.1109/IROS.2013.6696883

  36. Ros. http://www.ros.org (2014)

  37. Rusu, R., Cousins, S.: 3d is here: point cloud library (pcl). In: IEEE International Conference on Robotics and Automation (ICRA ’11), pp. 1 –4 (2011)

  38. Rusu, R.B., Marton, Z.C., Blodow, N., Dolha, M.E., Beetz, M.: Towards 3D point cloud based object maps for household environments. Robotics and Autonomous Systems. Spec. Issue Semant. Knowl. Robot. 56(11), 927–941 (2008)

    Google Scholar 

  39. Steinbruecker, F., Sturm, J., Cremers, D.: Real-time visual odometry from dense rgb-d images. In: Workshop on Live Dense Reconstruction with Moving Cameras at the International Conference on Computer Vision (ICCV) (2011)

  40. Wiemann, T.: The las vegas surface reconstruction toolkit. http://www.las-vegas.uni-osnabrueck.de (2014)

  41. Wiemann, T., Hertzberg, J., Lingemann, K., Annuth, H.: An evaluation of open source surface reconstruction software for robotic applications. In: Proceedings of International Conference On Advanced Robotics (ICAR 2013) (2013)

  42. Wiemann, T., Lingemann, K., Hertzberg, J.: Automatic map creation for environment modelling in robotic simulators. In: Proceedings 27th European Conference on Modelling and Simulation (ECMS 2013), pp. 712–718 (2013)

  43. Wiemann, T., Lingemann, K., Nüchter, A., Hertzberg, J.: A toolkit for automatic generation of polygonal maps – las vegas reconstruction. In: Proceedings of the 7th German Conference on Robotics (ROBOTIK 2012), pp. 446–451. VDE Verlag, München (2012)

  44. Wiemann, T., Nüchter, A., Lingemann, K., Stiene, S., Hertzberg, J.: Automatic construction of polygonal maps from point cloud data. In: IEEE International Workshop on Safety Security and Rescue Robotics (SSRR 2010), pp. 1–6 (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Wiemann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wiemann, T., Annuth, H., Lingemann, K. et al. An Extended Evaluation of Open Source Surface Reconstruction Software for Robotic Applications. J Intell Robot Syst 77, 149–170 (2015). https://doi.org/10.1007/s10846-014-0155-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-014-0155-1

Keywords

Navigation