Skip to main content
Log in

Aggressive Attitude Control of Unmanned Rotor Helicopters Using a Robust Controller

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

In this paper a robust controller is proposed for unmanned helicopters. The mathematical model of the helicopter is a multi-input, multi-output (MIMO) system with nonlinearities, parameter uncertainties, coupling effects, and external disturbances. A novel robust controller, which includes a nominal controller and a robust compensator, is proposed for obtaining robust attitude tracking performance in pitch and roll channels, respectively. The nominal controller is designed to achieve desired tracking performance for the nominal model, and the robust compensator design is based on robust signal compensation technology for restraining the effects of external disturbances, parameter uncertainties, nonlinearities and couplings. The proposed controller is linear, time invariant, and easy to implement. The robust property of the system is analyzed. It is proved that robust attitude tracking performance can be achieved. Experiments were carried out on a prototype unmanned helicopter THeli260, which included simulation evaluation and flight test under aggressive maneuvers. The results of the experiment exhibit advanced performance of the robust controller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Johnson, E.N., Kannan, S.K.: Adaptive trajectory control for autonomous helicopters[J]. J. Guid. Control. Dyn. 28(3), 524–538 (2005)

    Article  Google Scholar 

  2. Takahashi, M.D., H-infinity helicopter flight control law design with and without rotor state feedback[J]. J. Guid. Control. Dyn. 17(6), 1245–1251 (1994)

    Article  Google Scholar 

  3. Ferruz, J., Vega, V.M., Ollero, A., et al.: Reconfigurable control architecture for distributed systems in the HERO autonomous helicopter[J]. IEEE Trans. Ind. Electron. 58(12), 5311–5318 (2011)

    Article  Google Scholar 

  4. Isidori, A., Marconi, D.L., Serrani, DA.: Robust nonlinear motion control of a helicopter[M]. Robust Autonomous Guidance, pp 149–192. Springer, London (2003)

    Google Scholar 

  5. Bogdanov, A., Wan, E., Harvey, G.: SDRE flight control for X-Cell and R-Max autonomous helicopters[C]. Decision and Control, 2004. CDC. 43rd IEEE Conference on. IEEE 2, 1196–1203 (2004)

    Google Scholar 

  6. Prempain, E., Postlethwaite, I.: Static H loop shaping control of a fly-by-wire helicopter[J]. Automatica 41(9), 1517–1528 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Marconi, L., Naldi, R.: Robust full degree-of-freedom tracking control of a helicopter[J]. Automatica 43(11), 1909–1920 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Marconi, L., Naldi, R.: Aggressive control of helicopters in presence of parametric and dynamical uncertainties[J]. Mechatronics 18(7), 381–389 (2008)

    Article  Google Scholar 

  9. Cai, G., Feng, L., Chen, B.M., et al.: Systematic design methodology and construction of UAV helicopters[J]. Mechatronics 18(10), 545–558 (2008)

    Article  Google Scholar 

  10. Cai, G., Chen, B.M., Peng, K., et al.: Modeling and control of the yaw channel of a UAV helicopter[J]. IEEE Trans. Ind. Electron. 55(9), 3426–3434 (2008)

    Article  Google Scholar 

  11. Peng, K., Cai, G., Chen, B.M., et al.: Design and implementation of an autonomous flight control law for a UAV helicopter[J]. Automatica 45(10), 2333–2338 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. Raptis, I.A., Valavanis, K.P., Moreno, W.A.A.: novel nonlinear backstepping controller design for helicopters using the rotation matrix[J]. IEEE Trans. Control Syst. Technol. 19(2), 465–473 (2011)

    Article  Google Scholar 

  13. Raptis, I.A., Valavanis, K.P., Vachtsevanos, GJ.: Linear tracking control for small-scale unmanned helicopters[J]. IEEE Trans. Control Syst. Technol. 20(4), 995–1010 (2012)

    Article  Google Scholar 

  14. Xu, Y.: Multi-timescale nonlinear robust control for a miniature helicopter[J]. IEEE Trans. Aerosp. Electron. Syst. 46(2), 656–671 (2010)

    Article  Google Scholar 

  15. Lin, C.H., Jan, S.S., Hsiao, FB.: Autonomous hovering of an experimental unmanned helicopter system with proportional-integral sliding mode control[J]. J. Aerosp. Eng. 24(3), 338–348 (2010)

    Article  Google Scholar 

  16. Zheng, B., Zhong, Y.: Robust attitude regulation of a 3-DOF helicopter benchmark: theory and experiments[J]. IEEE Trans. Ind. Electron. 58(2), 660–670 (2011)

    Article  Google Scholar 

  17. Liu, H., Lu, G., Zhong, Y.: Robust LQR attitude control of a 3-DOF lab helicopter for aggressive maneuvers[J] (2012)

  18. ADS-33E-PRF, Aeronautical Design Standard Performance Specification Handling Qualities Requirements for Military Rotorcraft, United States Army Aviation and Missile Command (2000)

  19. Mettler, B.: Modeling Small-Scale Unmanned Rotorcraft for Advanced Flight Control Design. Carnegie Mellon University (Ph. D Dissertation) (2001)

  20. Cai, G., Chen, B.M., Lee, TH.: Unmanned rotorcraft system. Springer-Verlag (2011)

  21. Zhong, YS.: Robust output tracking control of SISO plants with multiple operating points and with parametric and unstructured uncertainties[J]. Int. J. Control. 75(4), 219–241 (2002)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geng Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, G. Aggressive Attitude Control of Unmanned Rotor Helicopters Using a Robust Controller. J Intell Robot Syst 80, 165–180 (2015). https://doi.org/10.1007/s10846-014-0160-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-014-0160-4

Keywords

Navigation