Skip to main content

Advertisement

Log in

Platform for Teaching Mobile Robotics

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper describes the development of a motivating and innovative multi-robot formation control platform for laboratory experiments with mobile robots. The platform is composed of two components: a simulator and an environment to experiment with low cost wheeled mobile robots. The environment constitutes a ready to use test tool that provides to engineering students the opportunity to simulate and test many different formation and cooperation control strategies with a real system. Currently the platform is used in the Systems and Control Engineering Master program offered by the National University of Distance Education (UNED) and the Complutense University of Madrid (UCM) in Spain. The use of the platform exposes students to hands-on laboratory sessions, contributing to their development as engineers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jimenez, E., Bravo, E., Bacca, E.: Tool for experimenting with concepts of mobile robotics as applied to childrens education. IEEE Trans. Educ 53(1), 88–95 (2010)

    Article  Google Scholar 

  2. Barak, M., Zadok, Y.: Robotics projects and learning concepts in science, technology and problem solving. INT. J. TECHNOL. DES. ED 19(3), 289–307 (2009)

    Google Scholar 

  3. Gómez-De-Gabriel, J., Mandow, A., Fernández-Lozano, J., García-Cerezo, A.: Using LEGO NXT mobile robots with LabVIEW. IEEE Trans. Educ 54(1), 41–47 (2011)

    Article  Google Scholar 

  4. Chew, M., Demidenko, S., Huang, L., Messom, C., Sen, G., Watts, M.: Simple Mobile Robots for Introduction into Engineering. IEEE IMTC. P. (1), 797–802 (2009)

  5. Navarro, P., Fernandez, C., Sánchez, P.: Industrial-Like Vehicle Platforms for Postgraduate Laboratory Courses on Robotics. IEEE T. on Educ. 56(1), 34–41 (2009)

    Article  Google Scholar 

  6. Dhaouadi, R., Sleiman, M.: Development of a modular mobile robot platform: Applications in motion-control education. IEEE T. Ind. Electron 5(4), 35–45 (2011)

    Article  Google Scholar 

  7. Hyeonwoo, Ch., Kim, S.: Mobile Robot Localization Using Biased Chirp-Spread-Spectrum Ranging. IEEE T. Ind. Electron 57(8), 2826–2835 (2010)

    Article  Google Scholar 

  8. Xing, X., Byung-Jae, Ch.: Position estimation algorithm based on natural landmark and fish-eyes’ lens for indoor mobile robot. Int. Conf. Comm. Sen. Net. (1), 596–600 (2011)

  9. Zhengcai, C., Yingtao, Zh., Shuguo, W.: Trajectory tracking and point stabilization of noholonomic robot. IEEE/RSJ. Int. Conf. Int. Rob. Sys. (1), 1328–1333 (2010)

  10. Bonin-Font, F., Burguera, A., Ortiz, A., Oliver, G.: Combining obstacle avoidance with robocentric localization in a reactive visual navigation task. IEEE Int. Conf. Ind. Tech. (1), 19–24 (2012)

  11. Chaos, D., Chacón, J., López-Orozco, J.A., Dormido, S.: Virtual and Remote Robotic Laboratory Using EJS MATLAB and LabVIEW. Sensors 13(2), 2595–2612 (2013)

    Article  Google Scholar 

  12. Aneesh, D.: Tracking controller of mobile robot. IEEE Int. Conf. Elect. Inf. Tech. (1), 343–349 (2012)

  13. Lee-Johnson, C.P., Carnegie, D.A.: Mobile robot navigation modulated by artificial emotions. IEEE Tran. Sys. Man. Cyb 40(2), 469–480 (2010)

    Article  Google Scholar 

  14. Defoort, M., Veluvolu, K.C.: A Motion Planning Framework with Connectivity Management for Multiple Cooperative Robots. J. Intell. Robot. Syst 75(2), 343–357 (2014)

    Article  Google Scholar 

  15. Guinaldo, M., Farias, G., Fabregas, E., Sánchez, J., Dormido-Canto, S., Dormido, S.: An interactive simulator for networked mobile robots. IEEE Net 26(3), 14–20 (2012)

    Article  Google Scholar 

  16. Xue, D., Yao, J., Chen, G., Yu, Y.: Formation control of networked multi-agent systems. Cont. Theo. App 4(10), 2168–2176 (2010)

    Article  MathSciNet  Google Scholar 

  17. Kostic, D., Adinandra, S., Caarls, J., Nijmeijer, H.: Collision-free motion coordination of unicycle multi-agent systems. Ame. Cont. Conf. (1), 3186–3191 (2010)

  18. Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M., Mathews, N., Ferrante, E., Di Caro, G., Ducatelle, F., Stirling, T., Gutiérrez, Á, Gambardella, L. M., Dorigo, M.: ARGoS: a Modular, Multi-Engine Simulator for Heterogeneous Swarm Robotics, Proceedings of IROS, 5027–5034 (2011)

  19. Guyot, L., Heiniger, N., Michel, O., Rohrer, F.: Teaching robotics with an open curriculum based on the epuck robot, simulations and competitions. In: Proceedings of the 2nd International Conference on Robotics in Education. Vienna, Austria (2011)

  20. Rohmer, E., Singh, S.P.N., Freese, M.: V-REP: A versatile and scalable robot simulation framework. Int. Robot. Syst. (IROS), 1321–1326 (2013)

  21. NXT LEGO Mindstorms Robots http://www.mindstorms.lego.com (2012)

  22. Benedettelli, D., Ceccarelli, N., Garulli, A., Giannitrapani, A.: Experimental validation of a decentralized control law for multi-vehicle collective motion. IEEE/RSJ Int. Conf. Int. Rob. Sys. (2007)

  23. Benedettelli, D., Casini, M., Garulli, A., Giannitrapani, A., Vicino, A.: A LEGO Mindstorms experimental setup for multi-agent systems (2009)

  24. Bizintek Innova, Moway Robots. http://www.moway (2012)

  25. KTeam Mobile Robotics, Khepera Robots. http://www.k-team.com/mobile-robotics-products/khepera-ii (2012)

  26. Chwa, D., Hong, S., Song, B.: Robuts posture stabilization of wheeled mobile robots in polar coordinates. In: Proc. 17th Int. Sym. Math. Theo. Net. Sys. Kyoto. Japan (2006)

  27. Jinyan, Sh., Guangming, X., Junzhi, Y., Long, W.: Leader-following formation control of multiple mobile robots. Proc. 2005 IEEE Int. Symp. Med. Conf. Cont. Aut. Int. Cont 62(1), 808–813 (2005)

    Google Scholar 

  28. Borenstein, J., Koren, Y.: The vector field histogram-fast obstacle avoidance for mobile robots. IEEE Trans. Rob. Aut 7(3), 278–288 (1991)

    Article  Google Scholar 

  29. Ulrich, I., Borenstein, J.: VFH+: Reliable Obstacle Avoidance for Fast Mobile Robots. In: Proceedings of the 1998 IEEE International Conference on Robotics and Automation. Leuven, Belgium, May 1621, 1572–1577 (1998)

  30. Ulrich, I., Borenstein, J.: VFH*: Local obstacle avoidance with look-ahead verification. International Conference on Robotics and Automation (ICRA 2000), 2505?2511, San Francisco, CA (2000)

  31. F Esquembre, Easy Java Simulations (EJS) http://fem.um.es/Ejs/ (2012)

  32. Lochmatter, T., Roduit, P., Cianci, C., Correll, N.: SwisTrack - A flexible open source tracking software for multi-agent systems. IEEE/RSJ 2008 Int. Conf. Inte. Rob. Sys. Nice. France (2008)

  33. Duro, N., Dormido, R., Vargas, H., Dormido-Canto, S., Sánchez, J., Farias, G., Dormido, S., Esquembre, F.: An Integrated Virtual and Remote Control Lab: The Three-Tank System as a Case Study. Comp. Sci. Eng 10(4), 50–59 (2008)

    Article  Google Scholar 

  34. Vargas, H., Sánchez, J., Dormido, S., Salzmann, C., Gillet, D., Esquembre, F.: Web-Enabled Remote Scientific Environments. Comp. Sci. Eng 11(3), 36–46 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernesto Fabregas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fabregas, E., Farias, G., Dormido-Canto, S. et al. Platform for Teaching Mobile Robotics. J Intell Robot Syst 81, 131–143 (2016). https://doi.org/10.1007/s10846-015-0229-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-015-0229-8

Keywords

Navigation