Skip to main content
Log in

Adaptive Control? But is so Simple!

A Tribute to the Efficiency, Simplicity and Beauty of Adaptive Control

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

In a recent paper, a few pioneers of adaptive control review the classical model reference adaptive control (MRAC) concept, where the designer is basically supposed to conceive a model of the same order as the (possibly very large) plant, and then build an adaptive controller such that the plant is stable and ultimately follows the behavior of the model. Basically, adaptive control methods based on model following assume full-state feedback or full-order observers or identifiers. These assumptions, along with supplementary prior knowledge, allowed the first rigorous proofs of stability with adaptive controllers, which at the time was a very important first result. However, in order to obtain this important mathematical result, the developers of classical MRAC took the useful scalar Optimal Control feedback signal and made it into an adaptive gain-vector of basically of the same order as the plant, which again had to multiply the plant state-vector in order to finally end with another scalar adaptive control feedback signal. It is quite known today, however, what happens when this requirement is not satisfied, and when “unmodeled dynamics” distorts the controller based on these ideal assumptions. Even though much effort has been invested to maintain stability in spite of so-called “unmodeled dynamics,” in some applications, such as large flexible structures and other real-world applications, even if one can assume that the order of the plant is known, one just cannot implement a controller of the same order as the plant (or even a “nominal” or a “dominant” part of the plant), before even mentioning the complexity of such an adaptive controller. Without entering the argument around their special reserve in relation to claimed efficiency of the particular L1-Adaptive Control methodology, this paper first shows that, after the first successful proof of stability and even under the same basic full-state availability assumption, the adaptive control itself can be reduced to just one adaptive gain (which multiplies one error signal) in single-input-single-output (SISO) systems and, as a straightforward extension, an m*m gain matrix in an m-input-m-output (MIMO) plant. Not only is stability not affected, but actually the simplified scheme also gets rid of most seemingly “inherent” problems of the adaptive control represented by classical MRAC. Moreover, proofs of stability have all been based on the so-called Barbalat’s lemma which seems to require very strict uniform continuity of signals. The apparent implications are that any discontinuity, such as square-wave input commands or just some occasionally discontinuous disturbance, may put stability of adaptive control in danger, without even mentioning such things as impulse response. Instead, based on old yet amazingly unknown extensions of LaSalle’s Invariance Principle to nonautonomous nonlinear systems, recent developments in stability analysis of nonlinear systems have mitigated or even eliminated most apparently necessary prior conditions, thus adding confidence in the robustness of adaptive scheme in real world situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdullah, A., Ioannou, P.: Decentralized and reconfiguration control for large scale systems with application to a segmented telescope test-bed. In: Proceedings of the 42nd IEEE Conference on Decision and Control, pp. 768–773. Maui, Hawaii, USA (2003)

    Google Scholar 

  2. Abdullah, A., Ioannou, P.: Real-time control of a segmented telescope test-bed. In: Proceedings of the 42nd IEEE Conference on Decision and Control, pp. 762–767. Maui, Hawaii, USA (2003)

    Google Scholar 

  3. van Amerongen, J., Ten-Cate, A.U.: Model reference adaptive controller for ships. Automatica 11, 441–449 (1975)

    Article  Google Scholar 

  4. Amini, F., Javanbakht, M.: Simple adaptive control of seismically excited structures with MR dampers. Struct. Eng. Mech. 52(2), 275–290 (2014). doi:10.12989/sem.2014.52.2.27

    Article  Google Scholar 

  5. Anderson, B.D.O.: Failures of adaptive control theory and their resolution. Commun. Inf. Syst. 5(1), 1–20 (2005)

    MathSciNet  MATH  Google Scholar 

  6. Anderson, B.D.O., Vongpanitlerd, S.: Network analysis and synthesis: a modern systems theory approach. Prentice-Hall, Englewood Cliffs, NJ (1973)

    Google Scholar 

  7. Aoki, T.: Implementation of fixed-point control algorithms based on the modified delta operator and form for intelligent systems. J. Adv. Comput. Intell. and Intell. Inform. 11(6), 709–714 (2007)

    Google Scholar 

  8. Artstein, Z.: Limiting equations and stability of nonautonomous ordinary differential equations, appendix a. In: The Stability of Dynamical Systems, vol. 35, pp. 187–235. SIAM, New York (1976)

    Google Scholar 

  9. Artstein, Z.: The limiting equations of nonautonomous ordinary differential equations. J. Differ. Equ. 25, 184–202 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  10. Artstein, Z.: Uniform asymptotic stability via the limiting equations. J. Differ. Equ. 27, 172–189 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  11. Åström, K.J.: Theory and applications of adaptive control - a survey. AUTOMATICA 19(5), 471–486 (1983)

    Article  Google Scholar 

  12. Åström, K.J., Wittenmark, B.: Adaptive Control. Addison Wesley, Reading, MA (1989)

  13. Balas, M.: Direct model reference adaptive control in infinite-dimensional linear spaces. J. Math. Anal. Appl. 196(1), 153–171 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  14. Balas, M.: Adaptive control of aerospace structures with persistent disturbances. In: 15th IFAC Symposium on Automatic Control in Aerospace. Bologna, Italy (2001)

  15. Barkana, I.: Direct multivariable model reference adaptive control with applications to large structural systems. Ph.D. thesis, Rensselaer Polytechnic Institute, Troy, NY (1983)

  16. Barkana, I.: Positive realness in discrete-time adaptive control systems. Int. J. Syst. Sci. 17, 1001–1006 (1986)

    Article  Google Scholar 

  17. Barkana, I. In: Leondes, C. (ed.) : Adaptive control - a simplified approach, vol. 35, pp. 187–235. Academic Press, New York (1987)

  18. Barkana, I.: Parallel feedforward and simplified adaptive control. Int. J. Adapt Control Signal Process. 1(2), 95–109 (1987)

    Article  Google Scholar 

  19. Barkana, I.: Comments on a paper by Kidd (Performance of adaptive controller in nonideal conditions). Int. J. Control. 48, 1011–1023 (1988)

    Article  Google Scholar 

  20. Barkana, I.: Positive realness in multivariable stationary linear systems. J. Frankl. Inst. 328, 403–417 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  21. Barkana, I.: Comments on ‘Design of strictly positive real systems using constant output feedback’. IEEE Trans. Autom. Control 49(10), 2091–2093 (2004). doi:10.1109/TAC.2004.837565

    Article  MathSciNet  Google Scholar 

  22. Barkana, I.: Classical and simple adaptive control design for a non-minimum phase autopilot. Journal of Guidance. Cont. Dyn. 28(4), 631–638 (2005)

    Article  Google Scholar 

  23. Barkana, I.: Gain conditions and convergence of simple adaptive control. Int. J. Adapt Control Signal Process. 19(1), 13–40 (2005). doi:10.1002/acs.830

    Article  MATH  Google Scholar 

  24. Barkana, I.: Output feedback stabilizability and passivity in nonstationary and nonlinear systems. Int. J. Adapt Control Signal Process. 24(7), 568–591 (2010)

    MathSciNet  MATH  Google Scholar 

  25. Barkana, I.: Discussion on: ’adaptive tracking for linear plants under fixed feedback’. Eur. J. Control. 12(5), 422–424 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Barkana, I.: Extensions on adaptive model tracking with mitigated passivity conditions. Chin. J. Aeronaut. 26(1), 136–150 (2013)

    Article  Google Scholar 

  27. Barkana, I.: The beauty of simple adaptive control and new results in nonlinear systems stability analysis. In: Proceedings of 2014 ICNPAA World Congress, 10th International Conference on Mathematical Problems in Engineering, Aerospace and Sciences. Narvik, Norway (2014)

  28. Barkana, I.: Defending the beauty of the invariance principle. Int. J. Control. 87(1), 186–206 (2014). doi:10.1080/00207179.2013.826385. (Published On-Line 6 September 2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Barkana, I.: Simple adaptive control - a stable direct model reference adaptive control methodology - brief survey. Int. J. Adapt Control Signal Process. 28(7), 567–603 (2014). doi:10.1002/acs.2411. (Published On-Line 17 June 2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Barkana, I.: The new theorem of stability - Direct extension of Lyapunov theorem. Math. Eng., Sci. Aerosp. (MESA) 6(3), 519–535 (2015). (Also BARKANA Consulting Technical Report, 2014)

    Google Scholar 

  31. Barkana, I.: Parallel feedforward and simple adaptive control of flexible structures: First order-pole instead of collocated velocity sensors? ASCEs Journal of Aerospace Engineering (2015)

  32. Barkana, I.: Robustness and perfect tracking in simple adaptive control. International Journal of Adaptive Control and Signal Processing (2015)

  33. Barkana, I., Fischl, R.: A simple adaptive enhancer of voltage stability for generator excitation control. In: Proceedings of The American Control Conference, pp. 1705–1709. PA, Pittsburgh (1992)

    Google Scholar 

  34. Barkana, I., Guez, A.: Simplified techniques for adaptive control of robots. In: Leondes, C. (ed.) Control and Dynamic Systems - Advances in Theory and Applications, vol. 40, pp. 147–203. Academic Press, New York (1991)

  35. Barkana, I., Kaufman, H.: Model reference adaptive control for time-variable input commands. In: Proceedings of 1982 Conference on Informational Sciences and Systems, pp. 208–211. Princeton, New Jersey (1982)

    Google Scholar 

  36. Barkana, I., Kaufman, H.: Discrete direct multivariable adaptive control. In: Proceedings of IFAC Workshop on Adaptive Systems in Control and Signal Processing, pp. 357–362. CA, San Francisco (1983)

    Google Scholar 

  37. Barkana, I., Kaufman, H.: Global stability and performance of an adaptive control algorithm. Int. J. Control. 46(6), 1491–1505 (1985)

    Article  Google Scholar 

  38. Barkana, I., Kaufman, H.: Robust simplified adaptive control for a class of multivariable continuous-time systems. In: Proceedings of 24th IEEE Conference on Decision and Control, pp. 141–146. FL, Fort Lauderdale (1985)

    Google Scholar 

  39. Barkana, I., Kaufman, H.: Simple adaptive control of uncertain systems. Int. J. Adapt Control Signal Process. 2(2), 133–143 (1988)

    Article  Google Scholar 

  40. Barkana, I., Kaufman, H., Balas, M.: Model reference adaptive control of large structural systems. Journal of Guidance. Cont. Dyn. 6(2), 112–118 (1983)

    Article  Google Scholar 

  41. Barkana, I., Teixeira, M.C.M., Hsu, L.: Mitigation of symmetry condition from positive realness for adaptive control. AUTOMATICA 42(9), 1611–1616 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  42. Bayard, D., Ih, C.H., Wang, S.: Adaptive control for flexible space structures with measurement noise. In: Proceedings of The American Control Conference, pp. 81–94. PA, Pittsburgh (1987)

    Google Scholar 

  43. Belkharraz, A.I., Sobel, K.: Simple adaptive control for aircraft control surface failures. IEEE Trans. Aerosp. Electron. Syst. 43(2), 600–611 (2007)

    Article  Google Scholar 

  44. Bitaraf, M., Barroso, L.R.: Structural performance improvement using mr dampers with adaptive control method. In: Proceedings of The American Control Conference, pp. 598–60. MO, St. Louis (2009)

    Google Scholar 

  45. Bitaraf, M., Hurlebaus, S.: Adaptive control of tall buildings under seismic excitation. In: Proceedings of The Ninth Pacific Conference on Earthquake Engineering Building an Earthquake-Resilient Society. Auckland, New Zealand (2011)

  46. Bitaraf, M., Hurlebaus, S.: Semi-active adaptive control of seismically excited 20-story nonlinear building. Eng. Struct. 56, 2107–2118 (2013)

    Article  Google Scholar 

  47. Bitmead, R., Gevers, M., Wertz, V.: Adaptive Optimal Control, The Thinking Man’s GPC. Prentice Hall Englewood Cliffs, New Jersey (1990)

    MATH  Google Scholar 

  48. Bobtsov, A.A., Pyrkin, A.A., Kolyubin, S.: Simple output feedback adaptive control based on passification principle. International Journal of Adaptive Control and Signal Processing

  49. Broussard, J., Berry, P.: Command generator tracking - the continuous time case, Technical Report. Tech. Rep. TIM-612-1, TASC (1978)

  50. Bruckner, A.M.: Differentiation of Real Functions, 2nd edn. American Mathematical Society, Providence, RI (1994)

    MATH  Google Scholar 

  51. Byrnes, C.I., Willems, J.C.: Adaptive stabilization of multivariable linear systems. In: Proceedings of 23rd IEEE Conference on Decision and Control, pp. 1547–1577. CA, San Diego (1984)

    Google Scholar 

  52. Cauer, W.: Synthesis of Linear Communication Networks McGraw-Hill, New York, NY (1958)

  53. Chen, F., Wu, Q., Jiang, B., Tao, G.: A reconfiguration scheme for quadrotor helicopter via simple adaptive control and quantum logic. IEEE Trans. Ind. Electron. 62(7), 4328–4335 (2015)

    Article  Google Scholar 

  54. Erzberger, H.: On the use of algebraic methods in the analysis and design of model following control systems, Technical Report. Tech. Rep. D-4663, NASA (1963)

  55. Feuer, A., Morse, A.: Adaptive control of single-input, single-output linear systems. IEEE Trans. Autom. Control AC–23, 557–569 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  56. Fradkov, A.L.: Quadratic Lyapunov function in the adaptive stabilization problem of a linear dynamic plant. Sib. Math. J. 2(2), 341–348 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  57. Fradkov, A.L.: Adaptive stabilization of minimal-phase vector-input objects without output derivative measurements. Physics-Doklady 39(8), 550–552 (1994)

    MathSciNet  MATH  Google Scholar 

  58. Fradkov, A.L.: Shunt output feedback adaptive controllers for nonlinear plants, pp. 367–362. CA, San Francisco (1996)

    Google Scholar 

  59. Fradkov, A.L.: Passification of non-square linear systems and feedback Yakubovich - Kalman - Popov lemma. Eur. J. Control. 6, 573–582 (2003)

    MATH  Google Scholar 

  60. Fradkov, A.L., Andrievsky, B.: Combined adaptive controller for uav guidance. Eur. J. Control. 11, 71–79 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  61. Goodwin, G., Sin, K.: Adaptive Filtering, Prediction and Control. Prentice Hall, Englewood Cliffs, NJ (1984)

  62. Goodwin, G.C., Ramadge, P., Caines, P.: Discrete time multivariable adaptive control. IEEE Trans. Autom. Control AC–25, 449–456 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  63. Hahn, W.: Stability of Motion. Springer, NY (1967)

    Book  MATH  Google Scholar 

  64. He, Y., Nonami, K., Zhang, Z.: Simple adaptive control for a flywheel zero-bias amb system. Int. J. Multidiscip. Sci. Eng. 4(2), 1–9 (2013)

    Google Scholar 

  65. Heyman, M., Lewis, J.H., Meyer, G.: Remarks on the adaptive control of linear plants with unknown high frequency gain. Syst. Control Lett. 5, 357–362 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  66. Hou, M., Duan, G., Guo, M.: New versions of Barbalats lemma with applications. J. Control Theory Appl. 8(4), 545–547 (2010)

    Article  MathSciNet  Google Scholar 

  67. Hovakimian, N.: L1 adaptive control. Tech. rep., Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign (2014)

  68. Hovakimyan, N., Cao, C.: L1 Adaptive Control Theory. Society for Industrial and Applied Mathematics, Philadelphia, PA (2010)

  69. Hsu, L., Costa, R.R.: Mimo direct adaptive control with reduced prior knowledge of the high frequency gain. In: Proceedings of 38th IEEE Conference on Decision and Control, pp. 3303–3308. AZ, Phoenix (1999)

    Google Scholar 

  70. Hsu, L., Teixeira, M.C.M., Costa, R.R., Assuncao, E.: Lyapunov design of multivariable MRAC via generalized passivation. Asian J. Control 17(6), 1–14 (2015)

    MathSciNet  MATH  Google Scholar 

  71. Hu, Q., Jia, Y., Xu, S.: Recursive dynamics algorithm for multibody systems with variable-speed control moment gyroscopes. Journal of Guidance. Control. Dyn. 36(5), 1388–1398 (2013)

    Article  Google Scholar 

  72. Hu, Q., Jia, Y., Xu, S.: Simple adaptive control for vibration suppression of space structures using control moment gyroscopes as actuators (2013)

  73. Hu, Q., Jia, Y., Xu, S.: Adaptive suppression of linear structural vibration using control moment gyroscopes. Journal of Guidance. Control. Dyn. 37(3), 990–995 (2014)

    Article  Google Scholar 

  74. Hu, Q., Zhang, J.: Attitude control and vibration suppression for flexible spacecraft using control moment gyroscopes. Journal of Aerospace Engineering (2015)

  75. Ih, C.H., Bayard, D., Wang, S.: Adaptive controller design for space station structures with payload articulation. In: Proceedings of 4th IFAC Symp. on Control of Distributed Parameter Systems. UCLA, Los Angeles (1986)

    Google Scholar 

  76. Ih, C.H., Wang, S., Leondes, C.: Adaptive control for flexible space structures with measurement noise. In: Proceedings of AIAA Guidance and Control Conference, pp. 709–724. PA, Pittsburgh (1985)

    Google Scholar 

  77. Ih, C.H., Wang, S., Leondes, C.: Adaptive control for the space station. IEEE Control. Syst. Mag. 7(1), 29–34 (1987)

    Article  Google Scholar 

  78. Ilchman, A., Owens, D., Pratzel-Wolters, D.: Remarks on the adaptive control of linear plants with unknown high frequency gain. Syst. Control Lett. 8, 397–404 (1987)

    Article  Google Scholar 

  79. Inoue, S., Shibasaki, H., Tanaka, R., Murakami, T., Ishida, Y.: Design of a model-following controller with stabilized digital inverse system in closed loop. Int. J. Electron. Electr. Eng. 2(2), 134–137 (2014)

    Article  Google Scholar 

  80. Ioannou, P.A., Annaswamy, A.M., Narendra, K.S., Jafari, S., Rudd, L., Ortega, R., Boskovic, J.: L1-adaptive control: Stability, robustness, and interpretations. IEEE Trans. Autom. Control 59(11), 3075–3080 (2014)

    Article  MathSciNet  Google Scholar 

  81. Ioannou, P.A., Kokotovic, P.: Adaptive Systems with Reduced Models. New York (1983)

  82. Ioannou, P.A., Sun, J.: Robust Adaptive Control. Upper Saddle River, NJ (1996)

  83. Ioannou, P.A., Tao, G.: Frequency domain conditions for strictly positive real functions. IEEE Trans. Autom. Control 32(1), 53–54 (1987)

    Article  MATH  Google Scholar 

  84. Ito, K.: Control performance comparison of simple adaptive control to water hydraulic servo cylinder system. In: Proceedings of 19th Mediterranean Conference on Control and Automation, pp. 195–200. Corfu, Greece (2011)

    Google Scholar 

  85. Ito, K., Yamada, T., Ikeo, S., Takahashi, K.: Application of simple adaptive control to water hydraulic servo cylinder system. Chinese J. Mech. Eng. 25(5), 882–888 (2013)

    Article  Google Scholar 

  86. Iwai, Z., Mizumoto, I.: Robust and simple adaptive control systems. Int. J. Control. 55, 1453–1470 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  87. Iwai, Z., Mizumoto, I.: Realization of simple adaptive control by using parallel feedforward compensator. Int. J. Control. 59, 1543–1565 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  88. Jeong, G.J., Kim, I.H., Son, Y.I.: Application of simple adaptive control to a dc/dc boost converter with load variation. In: Proceedings of ICROS-SICE Conference, pp. 1747–17,510. Fukuoka, Japan (2009)

  89. Jeong, G.J., Kim, I.H., Son, Y.I.: Design of an adaptive output feedback controller to a dc/dc boost converter subject to load variation. International Journal of Innovative Computing. Inf. Control. 7(2), 791–803 (2011)

    Google Scholar 

  90. Kalman, R.: When is a linear system optimal? Transactions of ASME, Journal of Basic Engineering. Serries D 86, 81–90 (1964)

    Google Scholar 

  91. Kaufman, H., Barkana, I., Sobel, K.: Direct Adaptive Control Algorithms, 2nd edn. Springer, New York (1998)

    Book  Google Scholar 

  92. Khajorntraidet, C., Ito, K.: Simple adaptive air-fuel ratio control of a port injection si engine with a cylinder pressure sensor. Control Theory Technol. 13(2), 141–150 (2015)

    Article  MathSciNet  Google Scholar 

  93. Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice-Hall, Englewood Cliffs, NJ (2002)

    MATH  Google Scholar 

  94. Kharisov, E., Hovakimyan, N.: Åström, K.J.: Comparison of architectures and robustness of model reference adaptive controllers and l1 adaptive controllers. Int. J. Adapt Control Signal Process., 28 (2014)

  95. Kim, S., Kim, H., Back, J., Shim, H., Seo, J.H.: Passification of SISO LTI Systems through a stable feedforward compensator. In: Proceedings of 11th International Conference on Control, Automation and Systems. KINTEX, Gyeonggi-do, Korea (2011)

  96. Krasovskii, N.N.: Stability of Motion. University Press, Stanford (1963)

    MATH  Google Scholar 

  97. Kreiselmayer, G., Anderson, B.: Robust model reference adaptive control. IEEE Trans. Autom. Control AC–31(2), 127–133 (1986)

    Article  MathSciNet  Google Scholar 

  98. Krstic, M., Kanellakopoulos, I., Kokotovic, P.: Nonlinear and Adaptive Control Design. John Wiley & Sons, New York (1995)

    MATH  Google Scholar 

  99. Kubo, S., Takamura, N., Nitta, M., Tagawa, Y.: A study of simple adaptive control system of electrical stimulation for upper limb motion. In: 35th Annual Intl Conf. of the IEEE EMBC13, Minisymposium Electrical Stimulation Therapeutics for Neurorehabilitation. Osaka, Japan (2013)

  100. Ladaci, S., Charef, A., Loiseau, J.J.: Robust fractional adaptive control based on the strictly positive realness condition. Int. J. Appl. Math. Comput. Sci 19, 69–76 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  101. Lam, Q., Barkana, I.: A close examination of under-actuated attitude control subsystem design for future satellite missions’ life extension. In: Proceedings of 2014 ICNPAA World Congress, 10th International Conference on Mathematical Problems in Engineering, Aerospace and Sciences. Narvik, Norway (2014)

  102. Landau, I.: Adaptive Control - The Model Reference Approach. Marcel Decker, New York (1979)

    MATH  Google Scholar 

  103. Landau, I.D.: Aa survey of model reference adaptive techniques: Theory and applications. Automatica 10, 353–379 (1974)

    Article  MATH  Google Scholar 

  104. LaSalle, J.P.: The Stability of Dynamical Systems. SIAM, Philadelphia (1976)

    Book  MATH  Google Scholar 

  105. LaSalle, J.P.: Stability of non-autonomous systems. Nonlinear Anal. Theory Methods Appl. 1(1), 83–90 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  106. LaSalle, J.P., Lefschetz, S.: Stability by Lyapunov Direct method with Applications. Academic Press, New York (1961)

    Google Scholar 

  107. Lee, F., Fong, I., Lin, Y.: Decentralized model reference adaptive control for large flexible structures, pp. 1538–1544. PA, Pittsburgh (1988)

    Google Scholar 

  108. Lee, T.C., Liaw, D.C., Chen, B.S.: A general invariance principle for nonlinear time-varying systems and its applications. IEEE Trans. Autom. Control 46(12), 1989–1993 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  109. Luzi, A.R., Peaucelle, D., Biannic, J.M., Pittet, C., Mignot, J.: Structured adaptive attitude control of a satellite. Int. J. Adapt Control Signal Process., 28 (2014)

  110. Lyapunov, A.M.: The General Problem of the Stability of Motion, Annales de la Faculté des Sciences de Toulouse, Second Series, vol. 9. Faculté des Sciences de Toulouse, Toulouse (1907)

    Google Scholar 

  111. Maganti, G.B., Singh, S.N.: Simplified adaptive control of an orbiting flexible spacecraft. Acta Astronautica 61, 575–589 (2007)

    Article  Google Scholar 

  112. Mahyuddin, M.N., Arshad, M.R.: Performance evaluation of direct model reference adaptive control on a coupled-tank liquid level system. ELEKTRIKA 10(2), 9–17 (2008)

    Google Scholar 

  113. Mahyuddin, M.N., Arshad, M.R., Mohamed, Z.: Simulation of direct model reference adaptive control on a coupled-tank system using nonlinear plant model. In: International Conference on Control, Instrumentation and Mechatronics Engineering (CIM07). Johor Bahru, Johor, Malaysia (2007)

  114. Mareels, I.: A simple selftuning controller for stable invertible systems. Syst. Control Lett. 4, 5–16 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  115. Mareels, I., Polderman, J.W.: Adaptive Systems: An Introduction. Birkhauser, Boston (1996)

    Book  MATH  Google Scholar 

  116. Mizumoto, I., Fujimoto, Y.: Fast-rate output feedback control system design with adaptive output estimator for nonuniformly sampled multirate systems. Int. J. Adapt Control Signal Process., 28 (2014)

  117. Moir, T., Grimble, M.: Optimal self-tuning filtering, prediction, and smoothing for discrete multivariable processes. IEEE Trans. Autom. Control 29(2), 128–137 (1984)

    Article  MATH  Google Scholar 

  118. Monopoli, R.V.: Model reference adaptive control with an augmented error signal. IEEE Trans. Autom. Control 19(5), 474–484 (1974)

    Article  MATH  Google Scholar 

  119. Mooij, E.: Passivity analysis for nonlinear, nonstationary entry capsules. Int. J. Adapt Control Signal Process., 28 (2014)

  120. Morse, A.S.: Global stability of parameter adaptive control systems. IEEE Trans. Autom. Control AC–25(5), 433–439 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  121. Morse, A.S.: New directions in parameter adaptive control systems. In: Proceedings of 23rd IEEE Conference on Decision and Control, pp. 1566–1568. Las Vegas, Nevada, USA (1984)

    Chapter  Google Scholar 

  122. Morse, W., Ossman, K.: Flight control reconfiguration using model reference adaptive control. In: Proceedings of 1989 American Control Conference, pp. 159–164. Pittsburgh, PA (1989)

    Google Scholar 

  123. Morse, W., Ossman, K.: Model following reconfigurable flight control system for the AFTI/F-16. Journal of Guidance. Control. Dyn. 13(6), 969–976 (1990)

    Article  Google Scholar 

  124. Tomizuka, M., Horowitz, R., Anwer, G., Jia, Y.L.: Implementation of adaptive techniques for motion control of robotic manipulators. ASME Journal of Dynamic Systems. Meas. Control. 110, 62–69 (1988)

    Article  MATH  Google Scholar 

  125. Mufti, I.H.: Model reference adaptive control for large structural systems. Journal of Guidance. Control. Dyn. 7(5), 507–509 (1987)

    Article  Google Scholar 

  126. Najafizadegan, H., Zarabadipour, H.: Control of voltage in proton exchange membrane fuel cell using model reference control approach. Int. J. Electrochem. Sci. 7, 6752–6761 (2012)

    Google Scholar 

  127. Narendra, K.S., Annaswamy, A.: Stable Adaptive Systems. Prentice Hall, Englewood Cliffs, NJ (1989)

  128. Narendra, K.S., Lin, Y.H., Valavani, L.: Stable adaptive controller design - part II: Proof of stability. IEEE Trans. Autom. Control AC–25, 440–448 (1980)

    Article  MATH  Google Scholar 

  129. Narendra, K.S., Valavani, L.: Adaptive controller design - direct control. IEEE Trans. Autom. Control AC–23, 570–583 (1978)

    Article  MATH  Google Scholar 

  130. Narendra, K.S., Valavani, L.: Direct and indirect model reference adaptive control. Automatica 15, 653–664 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  131. Nestorović-Trajkov, T., Köppe, H., Gabbert, U.: Direct model reference adaptive control (MRAC) design and simulation for the vibration suppression of piezoelectric smart structures. Commun. Nonlinear Sci. Numer. Simul. 13, 1896–1909 (2008). doi:10.1016/j.cnsns.2007.03.025

    Article  MATH  Google Scholar 

  132. Nussbaum, R.O.: Some remarks on a conjecture in parameter adaptive control. Syst. Control Lett. 3, 243–246 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  133. Okiyama, K., Ichiryu, K.: Study of pneumatic motion base control characteristics. In: Proceedings of the Fifth International Conference on Fluid Power Transmission and Control (ICFP’2001), pp. 228–232 (2001)

  134. Oldham, K.M., Spanier, J.: The Fractional Calculus. Dover, Mineola, NY (2006)

  135. Ortega, R., Yu, T.: Theoretical results on robustness of direct adaptive controllers. In: Proceedings of the IFAC Triennial World Conference, vol. 10, pp. 1–15 (1987)

  136. Osborn, P.V., Whitaker, H.P., Kezer, A.: New developments in the design of model reference adaptive control systems, paper 61 - 39. In: Proceedings of the Institute of Aeronautical Sciences (1961)

  137. Ozcelik, S., Kaufman, H.: Design of mimo robust direct model reference adaptive controller. In: Proceedings of 36th IEEE Conference on Decision and Control, pp. 1890–1895. CA, San Diego (1997)

    Chapter  Google Scholar 

  138. Ozcelik, S., Kaufman, H.: Design of robust direct adaptive controllers for siso: time and frequency domain design conditions. Int. J. Control. 72(6), 517–530 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  139. Palerm, C.C., Bequette, B.W.: Direct model reference adaptive control and saturation constraints. In: Proceedings of The 15th Triennial IFAC World Congress. Barcelona, Spain (2002)

  140. Palerm, C.C., Bequette, B.W., Ozcelik, S.: Robust control of drug infusion with time delays using direct adaptive control: Experimental results. In: Proceedings of American Control Conference, pp. 2972–2976. IL, Chicago (2000)

    Google Scholar 

  141. Phairoh, T., Huang, J.K.: U-tube tank damping system for ship roll motion using adaptive phase shift control. J. Commun. Comput. 8, 153–157 (2011)

    Google Scholar 

  142. Popov, V.M.: Absolute stability of nonlinear control systems of automatic control. Autom. Remote. Control., 22 (1962)

  143. Rajamani, R., Hedrick, J.K.: Adaptive observers for active automotive suspensions: Theory and experiment. IEEE Trans. Control Syst. Technol. 3(1), 86–93 (2009)

    Article  Google Scholar 

  144. Ritonja, J., Dolinar, D., Grčar, B.: Combined conventional-adaptive power system stabilizer. In: International Symposium on Electrical Power Engineering. Stokholm, Sweden (1995)

  145. Ritonja, J., Dolinar, D., Grčar, B.: Simple adaptive control for a power system stabilizer. Proceedings of Institute of Electrical Engineering. Control Theory Appl. 147(4), 373–380 (2000)

    Article  Google Scholar 

  146. Ritonja, J., Dolinar, D., Grčar, B.: Simple adaptive control for stability improvements. In: The 2001 IEEE International Conference on Control and Automation, ICCA 2001. Mexico City, Mexico (2001)

  147. Rohrs, C., Valavani, L., Athans, M., Stein, G.: Stability problems of adaptive control algorithms in the presence of unmodeled dynamics. In: Proceedings of 21st IEEE Conference on Decision and Control, pp. 3–11. Florida, Orlando (1982)

    Google Scholar 

  148. Rouche, N., Habets, P., Laloy, M.: Stability Theory by Lyapunov’s Direct Method. Springer, New York (1977)

    Book  MATH  Google Scholar 

  149. Rusnak, I., Barkana, I.: The duality of parallel feedforward and negative feedback. In: The 27th IEEE Convention of Electrical and Electronics Engineers in Israel (IEEEI 2012). Eilat, ISRAEL (2012)

  150. Rusnak, I., Weiss, H., Barkana, I.: Improving the performance of existing missile autopilot using simple adaptive control. Int. J. Adapt Control Signal Process. 28(7–8), 732–749 (2014). (Published online 6 January 2014 in Wiley Online Library (wileyonlinelibrary.com), doi:10.1002/acs.2457)

    Article  MathSciNet  MATH  Google Scholar 

  151. Safonov, M.G., Tsao, T.C.: The unfalsified control concept and learning. IEEE Trans. Autom. Control 42(6), 843–847 (1997). doi:10.1109/9.587340

    Article  MathSciNet  MATH  Google Scholar 

  152. Sanchez, E.: Adaptive control robustness in flexible aircraft application. In: Proceedings of American Control Conference, pp. 494–496 (1986)

  153. Sastri, S.: Nonlinear Systems. Springer, New York (1999)

    Book  Google Scholar 

  154. Sastry, S., Bodson, M.: Adaptive Control: Stability, Convergence, and Robustness. Prentice Hall, Englewood Cliffs, NJ (1989)

  155. Shibata, H., Sun, Y., Fujinaka, T., Maruoka, G.: Discrete-time simplified adaptive control algorithm and its applications to a motor control. In: Proceedings of IEEE International Symposium on Industrial Electronics (ISIE96), pp. 248–253. Warsaw, Poland (1996)

  156. Shimada, Y.: Adaptive control of large space structure. In: Proceedings of 16th International Symposium on Space Technology and Science. Sappro (1998)

  157. Shirish Shah Zenta Iwai, I.M., Deng, M.: Simple adaptive control of processes with time-delay. J. Process Control 7(6), 439–449 (1997)

    Article  Google Scholar 

  158. Slotine, J.J., Li, M.: Applied Nonlinear Control. Prentice Hall. Englewood Cliffs, New Jersey (1991)

    Google Scholar 

  159. Sobel, K., Kaufman, H., Mabus, L.: Model reference output adaptive control systems without parameter identification. In: Proceedings of 18th IEEE Conference on Decision and Control, vol. 2, pp. 347–351 (1979)

  160. Sobel, K., Kaufman, H., Mabus, L.: Adaptive control for a class of MIMO system. IEEE Trans. Aerosp. 8(2), 576–590 (1982)

    Article  Google Scholar 

  161. Sobel, K., Kaufman, H., Yekutiel, O.: Direct discrete model reference adaptive control: The multivariable case. In: Proceedings of 19th IEEE Conference on Decision and Control, vol. 19, pp. 1152–1157 (1980)

  162. Sobel, K., Kaufman, H., Yekutiel, O.: Design of multivariable adaptive control systems without the need for parameter identification. In: Methods and Applications in Adaptive Control, Lecture Notes in Control and Information Sciences 400, vol. 24. Springer, Berlin (2010). doi:10.1007/978-1-84996-101-1

    Google Scholar 

  163. Sobel, K.M., Kaufman, H.: Direct model reference adaptive control for a class of MIMO systems. In: Leondes, C. (ed.) Control and Dynamic Systems - Advances in Theory and Applications, vol. 24, pp. 245–314. Academic Press, New York (1986)

  164. Sun, G., Zhu, Z.H.: Fractional-order dynamics and control of rigid flexible coupling space structures. J. Guid. Control. Dyn. 38(7), 1324–1330 (2015)

    Article  Google Scholar 

  165. Sun, Y., Shibata, H., Maruoka, G.: Discrete-time simplified adaptive control of a dc motor based on asymptotic output tracker. Trans. Inst. Electr. Eng. Jpn 120-D(2), 254–261 (2000)

    Google Scholar 

  166. Tsukamoto, N., Yokota, S.: Two-degree-of freedom control including parallel feedforward compensator (the effects on the control of six-link electro-hydraulic serial manipulator). Trans. Jpn Fluid Power Syst. Soc. 34, 126–133 (2004)

    Article  Google Scholar 

  167. Ulrich, S., Sasiadek, J.: Decentralized simple adaptive control of nonlinear systems. Int. J. Adapt Control Signal Process. 28, 750–763 (2014). (Published online 21 November 2014 in Wiley Online Library (wileyonlinelibrary.com), doi:10.1002/acs.2446)

    Article  MathSciNet  MATH  Google Scholar 

  168. Ulrich, S., Sasiadek, J., Barkana, I.: Modeling and direct adaptive control of a flexible-joint manipulator. AIAA Journal of Guidance. Control. Dyn. 35(1), 25–38 (2012)

    Article  Google Scholar 

  169. Ulrich, S., Sasiadek, J., Barkana, I.: Nonlinear adaptive output feedback control of flexible-joint space manipulators with joint stiffness uncertainties. AIAA J. Guid. Control. Dyn. 37(6), 441–449 (2014). doi:10.2514/1.G000197. (Published online in AIAA Early Edition on 09 May 2014)

    Article  Google Scholar 

  170. Vidyasagar, M.: Nonlinear Systems Analysis. SIAM, Philadelphia (2002)

    Book  MATH  Google Scholar 

  171. Wang, N., Xu, W., Chen, F.: Robust output feedback passification of linear systems with unmodeled dynamics. Circuits, Syst. Signal Process. 27(5), 645–656 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  172. Weiss, H., Rusnak, I., Barkana, I.: Tracking errors of simple adaptive control. In: Proceedings of 54th Israel Annual Conference on Aerospace Sciences 2014 (2014 IACAS), pp. 1724–1747. Tel-Aviv and Haifa, Israel (2014)

    Google Scholar 

  173. Weiss, H., Wang, Q., Speyer, J.L.: Time-domain and frequency domain conditions for strictly positive realnes. IEEE Trans. Autom. Control 39(3), 540–544 (1994). doi:10.1109/9.280753

    Article  MathSciNet  Google Scholar 

  174. Wellstead, P., Zarrop, M.: Self-Tuning Systems. Wiley, Chichester, UK (1991)

  175. Wen, J., Balas, M.: Finite-dimensional direct adaptive control for discrete-time infinite-dimensional hilbert space. J. Math. Anal. Appl. 143(1), 1–26 (1989)

    Article  MathSciNet  Google Scholar 

  176. Wen, J.T.: Time-domain and frequency domain conditions for strictly positive realnes. IEEE Trans. Autom. Control 33(10), 988–992 (1988)

    Article  MATH  Google Scholar 

  177. Whitaker, H.: An adaptive performance of aircraft and spacecraft, paper 59-100. Inst. Aeronautical Sciences (1959)

  178. Yanada, H., Furuta, K.: Robust control of an electrohydraulic servo system utilizing online estimate of its natural frequency. In: Proceedings of the 6th JFPS International Symposium on Fluid Power. Tsukuba, Japan (2005)

  179. Yasser, M., Tanaka, H., Mizumoto, I.: A method of simple adaptive control using neural networks with offset error reduction for a siso magnetic levitation system. In: Proceedings of the 2010 International Conference on Modeling, Identification and Control. Okayama, Japan (2010)

  180. Yossef, T., Shaked, U., Yaesh, I.: Simplifed adaptive control of F16 aircraft pitch and angle-of-attack loops. In: Proceedings of 44th Israel Annual Conference on Aerospace Sciences 1998 (1998 IACAS). Tel-Aviv and Haifa, Israel (2004)

  181. Zhang, S., Luo, F.L.: An improved simple adaptive control applied to power system stabilizer. IEEE Trans. Power Electron. 24(2), 369–375 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Itzhak Barkana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barkana, I. Adaptive Control? But is so Simple!. J Intell Robot Syst 83, 3–34 (2016). https://doi.org/10.1007/s10846-015-0299-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-015-0299-7

Keywords

Navigation