Skip to main content
Log in

Experimental Approach for Evaluating an UAV COTS-Based Embedded Sensors System

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Fixed-wing Unmanned Aerial Vehicles (UAVs) are a class of UAVs which present many advantages notably long range of action. However, design of this kind of UAVs requires heavy logistics like outdoor tests, runways and experimented pilots. These constraints impact the development of embedded systems for fixed-wing UAVs. The purpose of this paper is to present an experimental approach for evaluating an embedded sensors system of a micro-fixed-wing UAV. Our idea is to test the sensors system using a vehicle that emulate the behavior of this UAV but without the constraints imposed by flight experimentations. Looking for the best emulation vehicle, first a theoretical and then an experimental study is conducted on a mobile robot and a bicycle models. We also show that, contrary to trend in literature, a mobile robot is not the optimal choice to emulate a fixed-wing UAV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ren, W., Sun, J.-S., Beard, R., McLain, T.: Experimental validation of an autonomous control system on a mobile robot platform. IET Control Theory Appl. 1(6), 1621–1629 (2007)

    Article  Google Scholar 

  2. Meyer, J., Strobel, A.. In: Robotics (ISR), 2010 41st International Symposium on and 2010 6th German Conference on Robotics (ROBOTIK), pp 1–8 (2010)

  3. Göktogan, A., Sukkarieh, S.: Distributed Simulation and Middleware for Networked UAS. J. Intell. Robot. Syst. 54(1–3), 331–357 (2009)

    Article  Google Scholar 

  4. Kendoul, F.: Survey of advances in guidance, navigation, and control of unmanned rotorcraft systems. J. Field Robotics 29(2), 315–378 (2012)

    Article  Google Scholar 

  5. Elkaim, G.H., Lie, F.A.P., Gebre-Egziabher, D.: Principles of Guidance, Navigation, and Control of UAVs. In: Valavanis, K.P., Vachtsevanos, G.J. (eds.) Handbook of Unmanned Aerial Vehicles, pp 347–380. Springer , Netherlands (2015)

    Chapter  Google Scholar 

  6. Santamaría, D., Alarcón, F., Jiménez, A., Viguria, A., Béjar, M., Ollero, A.: Model-based design, development and validation for uas critical software. J. Intell. Robot Syst. 65(1–4), 103–114 (2012)

    Article  Google Scholar 

  7. Louali, R., Bouaziz, S., Elouardi, A., Abouzahir, M.: Platform Simulation Based Unmanned Aircraft Systems Design. In: Proceedings of the 2nd World Conference on Complex Systems (WCCS14), to be published, Agadir, Morocco (2014)

  8. McLain, T.W., Beard, R.W., Kelsey, J.M.: Experimental Demonstration of Multiple Robot Cooperative Target Intercept (2002)

  9. Han, D., Kim, J., Min, C., Jo, S., Kim, J., Lee, D.: Development of Unmanned Aerial Vehicle (UAV) system with waypoint tracking and vision-based reconnaissance. Int. J. Control Autom. Syst. 8(5), 1091–1099 (2010)

    Article  Google Scholar 

  10. Kim, J.-H., Sukkarieh, S., Wishart, S.: Real-Time Navigation, Guidance, and Control of a UAV Using Low-Cost Sensors. In: Yuta, S., Asama, H., Prassler, E., Tsubouchi, T., Thrun, S. (eds.) Field and Service Robotics, pp 299–309. Springer, Berlin (2006)

  11. Louali, R., Djouadi, M.S., Nemra, A., Bouaziz, S., Elouardi, A.: Designing embedded systems for fixed-wing UAVs: Dynamic models study for the choice of an emulation vehicle. In: Multi-Conference on Systems, Signals Devices (SSD), 2014 11th International, pp 1–6 (2014)

  12. Chao, H., Cao, Y., Chen, Y.: Autopilots for small unmanned aerial vehicles: A survey. Int. J. Control. Autom. Syst. 8(1), 36–44 (2010)

    Article  Google Scholar 

  13. MBED web page, 2013. [Online]. Available: http://mbed.org/

  14. u-blox: u-blox 5 Receiver Description Including Protocol Specification. u-blox, 27-Nov-2009

  15. Robotics, C.H.: UM6 Ultra-Miniature Orientation Sensor Datasheet. CH Robotics (2013)

  16. diydrones: [Online]. Available: http://diydrones.com/. [Accessed: 15-May-2013] (2013)

  17. Al-Radaideh, A., Al-Jarrah, M.A., Jhemi, A., Dhaouadi, R.: ARF60 AUS-UAV modeling, system identification, guidance and control: Validation through hardware in the loop simulation. In: 6th International Symposium on Mechatronics and its Applications, 2009. ISMA ’09, pp 1–11 (2009)

  18. Dorobantu, A., Ozdemir, A.A., Turkoglu, K., Freeman, P., Murch, A., Mettler, B., Balas, G.: Frequency Domain System Identification for a Small, Low-Cost, Fixed-Wing UAV, in AIAA Guidance, Navigation, and Control Conference. Oregon, Portland (2011)

    Google Scholar 

  19. Vissiere, D., Petit, N.: An Embedded System for Small-scaled Autonomous Vehicles, presented at the International Conference on Informatics in Control, Automation and Robotics - ICINCO, 157 –164 (2008)

  20. XBee TM/XBee-PRO TM OEM RF Modules – Product Manual v1.06. digi, 28-Oct-2005

  21. MAVLink protocole: qgroundcontrol. [Online]. Available: http://qgroundcontrol.org/start. [Accessed: 20-May-2013]

  22. Cottet, F.: Scheduling in real-time systems. Chichester, West Sussex, England?; Hoboken, NJ, USA: J. Wiley (2002)

  23. Boiffier, J.-L.: The dynamics of flight the equations. Chichester [England]. Wiley, New York (1998)

    Google Scholar 

  24. Stevens, B.L.: Aircraft control and simulation, 2nd ed. J. Wiley, Hoboken, N.J (2003)

    Google Scholar 

  25. Dubin, L.E.: On curves of minimal length with a constraint on average curvature and with prescribed initial and terminal positions and tangents, American Journal of Mathematics, pp. 497–516 , 03-Jul-1957

  26. Cook, M.V., principles, Flight dynamics: a linear systems approach to aircraft stability and control, 3rd ed. Butterworth-Heinemann, Amsterdam?; Boston (2013)

    Google Scholar 

  27. Rubio, J. de J., Aquino, V., Figueroa, M.: Inverse kinematics of a mobile robot. Neural Comput. Applic. 23(1), 187–194 (2012)

    Article  Google Scholar 

  28. Escalona, J.L., Recuero, A.M.: A bicycle model for education in multibody dynamics and real-time interactive simulation. Multibody Sys.Dyn. 27(3), 383–402 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Yavin, Y.: The derivation of a kinematic model from the dynamic model of the motion of a riderless bicycle. Comput. Math. Appl. 151(6–7), 865–878 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lowell, J.: The stability of bicycles. Am. J. Phys. 50(12), 1106 (1982)

    Article  MathSciNet  Google Scholar 

  31. Astrom, K.J., Klein, R.E., Lennartsson, A.: Bicycle dynamics and control: adapted bicycles for education and research. IEEE Control. Syst. 25(4), 26–47 (2005)

    Article  MathSciNet  Google Scholar 

  32. Chao, H., Coopmans, C., Di, L., Chen, Y.-Q.: A comparative evaluation of low-cost IMUs for unmanned autonomous systems. In: 2010 IEEE Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), pp 211–216 (2010)

  33. Astuti, G., Longo, D., C.D., Muscato, G., Orlando, A.: HIL Tuning of UAV for Exploration of Risky Environments. Int. J. Adv. Robot. Syst. 1 (2008)

  34. Di, L., Chao, H., Chen, Y.-Q.: A two-stage calibration method for low-cost UAV attitude estimation using infrared sensor. In: 2010 IEEE/ASME International Conference on Mechatronics and Embedded Systems and Applications (MESA), pp 137 –142 (2010)

  35. CoroBot web site: CoroBot Web site. [Online]. Available: http://robotics.coroware.com/cl4/. [Accessed: 08-Sep-2013]

  36. Microsoft Visual Studio 2008 Documentation/Multi media/WIN32/JOYINFOEX. Microsoft

  37. Phidgets website: phidgets website. [Online]. Available: http://www.phidgets.com/. [Accessed: 08-Sep-2013]

  38. Hua, M.-D.: Attitude estimation for accelerated vehicles using GPS/INS measurements. Control. Eng. Pract. 18(7), 723–732 (Jul. 2010)

    Article  Google Scholar 

  39. Roberts, A., Tayebi, A.: On the attitude estimation of accelerating rigid-bodies using GPS and IMU measurements. In: 2011 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC), pp 8088–8093 (2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rabah Louali or Abdelhafid Elouardi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Louali, R., Elouardi, A., Bouaziz, S. et al. Experimental Approach for Evaluating an UAV COTS-Based Embedded Sensors System. J Intell Robot Syst 83, 289–313 (2016). https://doi.org/10.1007/s10846-015-0323-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-015-0323-y

Keywords

Navigation