Abstract
This paper presents an effective method which needs free parameters as little as possible to autonomously extract the weld seam profile and edges from the molten background in two kinds of weld images within robotic MAG welding. First, orientation saliency detection produced by Gabor filtering nicely highlights the weld seam profile and edges from the molten background. Then, an unsupervised clustering algorithm combing a cluster validity index via an optimization rule, referred to as parameter self-optimizing clustering, is applied to discern the weld seam profile and edges from interference data after the orientation saliency detection result is given threshold segmentation. The validity index is better than the classical ones in two kinds of data sets through considerable tests. Last, two common applications of weld seam identification demonstrate the effectiveness of the proposed method.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Zhang, Y., Gao, X.: Analysis of characteristics of molten pool using cast shadow during high-power disk laser welding. Int. J. Adv. Manuf. Technol. 70(9–12), 1979–1988 (2014)
Xu, Y., Zhong, J., Ding, M., Chen, H., Chen, S.: The acquisition and processing of real-time information for height tracking of robotic GTAW process by arc sensor. Int. J. Adv. Manuf. Technol. 65 (5–8), 1031–1043 (2013)
Ye, Z., Fang, G., Chen, S., Zou, J.: Passive vision based seam tracking system for pulse-MAG welding. Int. J. Adv. Manuf. Technol. 67(9–12), 1987–1996 (2013)
Fernandez, V., Acevedo, R., Alvarez, A., Lopez, A., Garcia, D., Fernandez, R., Meana, M., Sanchez, J.: Low-cost system for weld tracking based on artificial vision. IEEE Trans. Indus. App. 47(3), 1159–1167 (2011)
Nele, L., Sarno, E., Keshari, A.: An image acquisition system for real-time seam tracking. Int. J. Adv. Manuf. Technol. 66(9–12), 2099–2110 (2013)
Zhang, L., Wei, K., Han, Z., Jiao, J.: A cross structured light sensor for weld line detection on wall-climbing robot. In: Proceedings of 2013 IEEE International conference on mechatronics and automation. Takamatsu, Japan, pp. 1179–1184 (2013)
Zhang, L., Ye, Q., Yang, W., Jiao, J.: Weld line detection and tracking via spatial-temporal cascaded hidden Markov models and cross structured light. IEEE Trans. Instrum. Meas. 63(4), 742–753 (2014)
Huang, Y., Xiao, Y., Wang, P., Li, M.: A seam-tracking laser welding platform with 3D and 2D visual information fusion vision sensor system. Int. J. Adv. Manuf. Technol. 67, 415–426 (2013)
Xu, Y., Fang, G., Chen, S., Zou, J., Ye, Z.: Real-time image processing for vision-based weld seam tracking in robotic GMAW. Int. J. Adv. Manuf. Technol. 73(9), 1413–1425 (2014)
Usamentiaga, R., Molleda, J., García, D.: Fast and robust laser stripe extraction for 3D reconstruction in industrial environments. Mach. Vision Appl. 23, 179–196 (2012)
Gu, W., Xiong, Z., Wan, W.: Autonomous seam acquisition and tracking system for multi -pass welding based on vision sensor. Int. J. Adv. Manuf. Technol. 69, 451–460 (2013)
Nguyen, H., Lee, B.: Laser-vision-based quality inspection system for small bead laser welding. Int. J. Precis. Eng. Manuf. 15(3), 415–423 (2014)
Chen, H., Liu, W., Huang, L., Xing, G., Wang, M., Sun, H.: The decoupling visual feature extraction of dynamic three-dimensional V-type seam for gantry welding robot. Int. J. Adv. Manuf. Technol. 80, 1741–1749 (2015)
He, Y., Chen, Y., Xu, Y., Huang, Y., Chen, S.: Autonomous Detection of Weld Seam Profiles via a Model of Saliency-Based Visual Attention for Robotic Arc Welding. J. Intell. Robot Syst., Published online: 28 March 2015. doi:10.1007/s10846-015-0226-y (2015)
He, Y., Xu, Y., Chen, Y., Chen, H., Chen, S.: Weld seam profile detection and feature point extraction for multi-pass route planning based on visual attention model. Robot. Comput. Integr. Manuf. 37, 251–261 (2016)
Jain, A., Murty, M., Flynn, P.: Data clustering: a review. ACM Comput. Surv. 31(3), 264–323 (1999)
Jain, A., Topchy, A., Law, M., Buhmann, J.: Landscape of clustering algorithms. In: Proceedings of the 17th International Conference on Pattern Recognition, 2004, ICPR 2004, vol. 1, pp. 260–263 (2004)
Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Stat. Soc.: Series B (Methodological) 39, 1–38 (1977)
Ester, M., Kriegel, H., Sander, J., Xu, X.: A Density-based Algorithm for Discovering Clusters in Large Spatial Databases with Noise, pp. 226–231 . AAAI Press (1996)
Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P.: Automatic subspace clustering of high dimensional data. In: Proceeding of the ACM SIGMOD International Conference on Management of Data. Seattle, Washington, pp. 94–105 (1998)
Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416 (2007)
Karypis, G., Han, E., Kumar, V.: Chameleon: hierarchical clustering using dynamic modeling. Computer 32, 68–75 (1999)
Johnson, S.: Hierarchical clustering schemes. Psychometrika 32, 241–254 (1967)
Lu, S., Fu, K.: A sentence-to-sentence clustering procedure for pattern analysis. IEEE Trans. Syst. Man Cyb. 8, 381–389 (1978)
Hartuv, E., Shamir, R.: A clustering algorithm based on graph connectivity. Informa. Process. Lett 76, 175–181 (2000)
Hubert, L.: Some applications of graph theory to clustering. Psychometrika 39, 283–309 (1974)
Jain, A., Murty, M., Flynn, P.: Data clustering: a review. ACM Comput. Surv. 31, 264–323 (1999)
Pal, N., Biswas, J.: Cluster validation using graph theoretic concepts. Pattern Recognit. 30, 847–857 (1997)
Hanwell, D., Mirmehdi, M.: QUAC: Quick unsupervised anisotropic clustering. Pattern Recognit. 47, 427–440 (2014)
Arbelaitz, O., Gurrutxaga, I., Muguerza, J., Pérez, J., Perona, I.: An extensive comparative study of cluster validity indices. Pattern Recognit. 46, 243–256 (2013)
Halkidi, M., Batistakis, Y., Vazirgiannis, M.: On clustering validation techniques. J. Intell. Inf. Syst. 17, 107–145 (2001)
Dunn, J.: A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. J. Cybernet. 3, 32–57 (1973)
Calinski, T., Harabasz, J.: A dendrite method for cluster analysis. Commun. Stat. 3, 1–27 (1974)
Nishida, T.: An application of P system: a new algorithm for NP-complete optimization problems. In: Proceedings of 8th World Multi-Conference on Systems, Cybernetics and Information. Orlando, Florida, pp. 109–112 (2004)
Nishida, T.: An approximate algorithm for NP-complete optimization problems exploiting P systems, pp. 185–192 (2004)
žalik, K.: Cluster validity index for estimation of fuzzy clusters of different sizes and densities. Pattern Recognit. 43, 3374–3390 (2010)
Kim, M., Ramakrishna, R.: New indices for cluster validity assessment. Pattern Recognit. Lett. 26(15), 2353–2363 (2005)
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
He, Y., Chen, H., Huang, Y. et al. Parameter Self-Optimizing Clustering for Autonomous Extraction of the Weld Seam Based on Orientation Saliency in Robotic MAG Welding. J Intell Robot Syst 83, 219–237 (2016). https://doi.org/10.1007/s10846-015-0331-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10846-015-0331-y