Skip to main content
Log in

Architecture for the Automatic Generation of Plans for Multiple UAS from a Generic Mission Description

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

A planning approach for a platform composed of multiple unmanned aerial systems is presented in this paper. The research activities are focused on the interoperability, task allocation and task planning problems within the system. In order to tackle with the interoperability problem between the vehicles of the platform and other external systems, C-BML has been chosen as the standard language to formalize the description of the missions. Regarding the planning problems involved, several planners have been applied to solve them: a task allocation planner to create an initial assignment of tasks to vehicles, a symbolic planner for high-level reasoning and tools for geometric reasoning. The main contribution of the paper is the use of consolidated task planning techniques to automatically generate low-level plans from a mission described in C-BML, filling the gap between interoperability and automatic plan generation for missions where multiple heterogeneous aerial platforms are involved. The approach has been tested in missions involving multiple surveillance and 3D map generation tasks and the paper includes experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bacchus, F., Kabanza, F., Sherbrooke, U.D.: Using temporal logics to express search control knowledge for planning. Artif. Intell. 116, 2000 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cambon, S., Alami, R., Gravot, F.: A hybrid approach to intricate motion, manipulation and task planning. Int. J. Robot. Res. 28(1), 104–126 (2009). doi:10.1177/0278364908097884. http://ijr.sagepub.com/content/28/1/104.abstract

    Article  Google Scholar 

  3. Chen, Y., Wah, B.W., wei Hsu, C.: Temporal planning using subgoal partitioning and resolution in SGPlan. J. Artif. Intell. Res. 26, 369 (2006)

    MATH  Google Scholar 

  4. Currie, K., Tate, A., Bridge, S.: O-Plan: the open planning architecture (1990)

  5. Gerevini, A., Kuter, U., Nau, D., Saetti, A., Waisbrot, N.: Combining domain-independent planning and HTN planning: the duet planner (2008)

  6. Gerevini, A., Saetti, A., Serina, I.: Planning through stochastic local search and temporal action graphs. J. Artif. Intell. Res. 20, 239–290 (2003)

    MATH  Google Scholar 

  7. Helmert, M.: The fast downward planning system. J. Artif. Intell. Res., 191–246 (2006)

  8. Ingrand, F., Ghallab, M.: Robotics and artificial intelligence: a perspective on deliberation functions. AI Commun. 27(1), 63–80 (2014)

    MathSciNet  Google Scholar 

  9. Kvarnström, J., Doherty, P.: TALPlanner: a temporal logic based forward chaining planner. Ann. Math. Artif. Intell. 30, 2001 (2001)

    MATH  Google Scholar 

  10. Lagriffoul, F., Dimitrov, D., Bidot, J., Saffiotti, A., Karlsson, L.: Efficiently combining task and motion planning using geometric constraints. Int. J. Robot. Res. 33(14), 1726–1747 (2014). doi:10.1177/0278364914545811. http://ijr.sagepub.com/content/33/14/1726.abstract

    Article  Google Scholar 

  11. LaValle, S.M.: Planning algorithms. Available at http://planning.cs.uiuc.edu/ (2006)

  12. Maza, I., Caballero, F., Molina, R., Pena, N., Ollero, A.: Multimodal interface technologies for UAV ground control stations. a comparative analysis. J. Intell. Robot. Syst. 57(1–4), 371–391 (2010). doi:10.1007/s10846-009-9351-9

    Article  MATH  Google Scholar 

  13. Maza, I., Ollero, A.: Multiple UAV cooperative searching operation using polygon area decomposition and efficient coverage algorithms Distributed Autonomous Robotic Systems, vol. 6, pp 221–230. Springer, Berlin Heidelberg New York (2007). http://www.springerlink.com/content/978-4-431-35869-5#section=288931&page=1&locus=0

  14. Nau, D., Ilghami, O., Kuter, U., Murdock, J.W., Wu, D., Yaman, F.: Shop2: an HTN planning system. J. Artif. Intell. Res. 20, 379–404 (2003)

    MATH  Google Scholar 

  15. Perez, D., Maza, I., Caballero, F., Scarlatti, D., Casado, E., Ollero, A.: A ground control station for a multi-UAV surveillance system. J. Intell. Robot. Syst. 69(1–4), 119–130 (2013). doi:10.1007/s10846-012-9759-5

    Article  Google Scholar 

  16. Red Hat open source community: OptaPlanner. http://www.optaplanner.org/ (2014). Accessed 12 December 2014

  17. Rohmer, E., Singh, S., Freese, M.: V-rep: a versatile and scalable robot simulation framework. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp 1321–1326 (2013). doi:10.1109/IROS.2013.6696520

  18. Shivashankar, V., Alford, R., Kuter, U., Nau, D.: The GoDeL Planning System: A More Perfect Union of Domain-independent and Hierarchical Planning Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence, pp 2380–2386 (2013). http://dl.acm.org/citation.cfm?id=2540128.2540470

  19. SISO: Standard for: Coalition battle management language (C-BML) phase 1 (2012)

  20. Wilkins, D.E.: Practical planning: extending the classical AI planning paradigm. Morgan Kaufmann, San Francisco (1988)

    Google Scholar 

  21. Wolfe, J., Marthi, B., Russell, S.J.: Combined task and motion planning for mobile manipulation. Tech. Rep. UCB/EECS-2010-27, EECS Department, University of California, Berkeley. http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-27.html (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Maza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muñoz-Morera, J., Maza, I., Caballero, F. et al. Architecture for the Automatic Generation of Plans for Multiple UAS from a Generic Mission Description. J Intell Robot Syst 84, 493–509 (2016). https://doi.org/10.1007/s10846-016-0354-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-016-0354-z

Keywords

Navigation