Abstract
One of the most important features of mobile robots is their capability to gather data from areas beyond human reach. This capability has increased the demand for the use of robots undertaking exploration tasks, which has naturally led to the need for efficient methods to process the obtained data. Image mosaicing is a useful tool for obtaining a high-resolution visual representation of a large area that has been explored using optical sensors. In this paper, we present an efficient image mosaicing approach that utilizes submapping methods to obtain a map of a surveyed area with reduced computational effort. The approach uses a modified agglomerative hierarchical clustering method to form submaps according to similarity information obtained through feature descriptor matching, and takes advantage of this submapping to reduce the computation and time costs. Comparative results on real challenging underwater datasets are presented.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Agarwal, S., Snavely, N., Simon, I., Seitz, S.M., Szeliski, R.: Building Rome in a day. In: IEEE 12th international conference on computer vision, pp 72–79 (2009)
Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features (2006)
Bingham, B., Foley, B., Singh, H., Camilli, R., Delaporta, K., Eustice, R., Mallios, A., Mindell, D., Roman, C., Sakellariou, D.: Robotic tools for deep water archaeology: surveying an ancient shipwreck with an autonomous underwater vehicle. J. Field Robot. 27(6), 702–717 (2010)
Botterill, T., Mills, S., Green, R.: Bag-of-words-driven, single-camera simultaneous localization and mapping. J. Field Robot. 28(2), 204–226 (2011). doi:10.1002/rob.20368
Bulow, H., Birk, A.: Fast and robust photomapping with an unmanned aerial vehicle UAV. In: IEEE/RSJ international conference on intelligent robots and systems, 2009. IROS 2009, pp 3368–3373 (2009)
Caballero, F., Merino, L., Ferruz, J., Ollero, A.: Homography based Kalman filter for mosaic building. applications to UAV position estimation. In: IEEE international conference on robotics and automation, pp 2004–2009 (2007)
Choukroun, A., Charvillat, V.: Bucketing techniques in robust regression for computer vision, vol. 2749, pp 609–616 (2003)
Day, W.E., Edelsbrunner, H.: Efficient algorithms for agglomerative hierarchical clustering methods. J. Classif. 1, 7–24 (1984)
Donovan, G.T.: Position error correction for an autonomous underwater vehicle inertial navigation system (ins) using a particle filter. IEEE J. Ocean. Eng. 37(3), 431–445 (2012)
Elibol, A., Gracias, N., Garcia, R.: Fast topology estimation for image mosaicing using adaptive information thresholding. Robot. Auton. Syst. 61(2), 125–136 (2013)
Escartin, J., Garcia, R., Delaunoy, O., Ferrer, J., Gracias, N., Elibol, A., Cufi, X., Neumann, L., Fornari, D.J., Humpris, S.E., Renard, J.: Globally aligned photomosaic of the Lucky Strike hydrothermal vent field (Mid-Atlantic Ridge, 3718.5’N): Release of georeferenced data, mosaic construction, and viewing software. Geochem. Geophys. Geosyst. 9(12), Q12,009 (2008)
Estrada, C., Neira, J., Tardos, J.: Hierarchical SLAM: real-time accurate mapping of large environments. IEEE Trans. Robot. 21(4), 588–596 (2005)
Ferreira, F., Veruggio, G., Caccia, M., Bruzzone, G.: An online slam-based mosaicking using local maps for ROVs. In: IEEE international conference on robotics and automation (ICRA), pp 1058–1063 (2011)
Ferreira, F., Veruggio, G., Caccia, M., Bruzzone, G.: Real-time optical SLAM-based mosaicking for unmanned underwater vehicles. Intel. Serv. Robotics 5, 55–71 (2012)
Garcia, R., Cufi, X., Ridao, P., Carreras, M.: Constructing photo-mosaics to assist uuv navigation and station-keeping. In: Robotics and automation in the maritime industries, pp 195–234 (2006)
Garcia, R., Gracias, N.: Detection of interest points in turbid underwater images. In: Proceedings of the Oceans MTS/IEEE, pp. 1–9 (2011)
Garcia, R., Nicosevici, T., Cufí, X.: On the way to solve lighting problems in underwater imaging. In: Proceedings of the Oceans MTS/IEEE OCEANS 2002, vol. 2, pp. 1018–1024. IEEE (2002)
GNOM Standard ROV. Retrieved from (2014). http://www.gnom-rov.com/products/gnom-standard/
Gracias, N., Costeira, J.P., Victor, J.S.: Linear global mosaics for underwater surveying. In: 5th IFAC Symposium on Intelligent Autonomous Vehicles, vol. I. Lisbon, Portugal (2004)
Gracias, N., Negahdaripour, S., Neumann, L., Prados, R., Garcia, R.: A motion compensated filtering approach to remove sunlight flicker in shallow water images. In: Proceedings of the Oceans MTS/IEEE OCEANS 2008, pp. 1–7. IEEE (2008)
Gracias, N., Ridao, P., Garcia, R., Escartin, J., L’Hour, M., Cibecchini, F., Campos, R., Carreras, M., Ribas, D., Palomeras, N., Magi, L., Palomer, A., Nicosevici, T., Prados, R., Hegedus, R., Neumann, L., de Filippo, F., Mallios, A.: Mapping the moon: Using a lightweight auv to survey the site of the 17th century ship ’La Lune’. In: Proceedings of the Oceans MTS/IEEE OCEANS 2013, pp 1–8 (2013), doi:10.1109/OCEANS-Bergen.2013.6608142
Gracias, N., Zwaan, S., Bernardino, A., Santos-Victor, J.: Mosaic based navigation for autonomous underwater vehicles. IEEE J. Ocean. Eng. 28(4), 609–624 (2003)
Haralick, R.M.: Propagating covariance in computer vision. In: 9. Theoretical Foundations of Computer Vision, pp. 95–114 (1998)
Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Harlow, UK (2004)
Ho, K., Newman, P.: Multiple map intersection detection using visual appearance. In: International Conference on Computational Intelligence, Robotics and Autonomous Systems (2005)
Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1998)
Kekec, T., Yildirim, A., Unel, M.: A new approach to real-time mosaicing of aerial images. Robot. Auton. Syst. 62(12), 1755–1767 (2014)
Leonard, J., Newman, P.: Consistent, convergent, and constant-time SLAM. In: Proceedings of the 18th international joint conference on Artificial intelligence, IJCAI’03, pp 1143–1150 (2003)
Leone, A., Distante, C., Mastrolia, A., Indiverr, G.: A fully automated approach for underwater mosaicking. In: MTS/IEEE OCEANS Conference, Boston, USA, pp 1–6 (2006)
Liang, Z., Chen, Y.: Closed-loop detection algorithm using visual words. Int. J. Robot. Autom. 29(2), 3857–3872 (2014)
Lirman, D., Gracias, N., Gintert, B., Gleason, A., Reid, R.P., Negahdaripour, S., Kramer, P.: Development and application of a video–mosaic survey technology to document the status of coral reef communities. Environ. Monit. Assess. 159, 59–73 (2007)
Marcon, Y.: LAPMv2: An improved tool for underwater large-area photo-mosaicking. In: IEEE Oceans-St. John’s, 2014, pp. 1–10 (2014)
Nemhauser, G.L., Wolsey, L.A.: Integer and combinatorial optimization. Wiley-Interscience (1988)
Park, J.Y., Choi, J.Y., Jeong, E.Y.: Applying an underwater photography technique to nearshore benthic mapping: A case study in a rocky shore environment. J. Coast. Res. SI 64, 1764–1768 (2011)
Pizarro, O., Williams, S.B., Jakuba, M.V., Johnson-Roberson, M., Mahon, I., Bryson, M., Steinberg, D., Friedman, A., Dansereau, D., Nourani-Vatani, N., Bongiorno, D., Bewley, M., Bender, A., Ashan, N., Douillard, B.: Benthic monitoring with robotic platforms – the experience of Australia. In: IEEE International Underwater Technology Symposium (UT), pp. 1–10 (2013)
Prados, R., Garcia, R., Neumann, L.: Image blending techniques and their application in underwater mosaicing. Springer (2014)
Ribas, D., Palomeras, N., Ridao, P., Carreras, M., Hernandez, E.: Ictineu AUV wins the first SAUC-E competition. In: IEEE International Conference on Robotics and Automation. Roma, Italy (2007)
Ribas, D., Palomeras, N., Ridao, P., Carreras, M., Mallios, A.: Girona 500 AUV: From survey to intervention. IEEE/ASME Trans. Mechatron. 17(1), 46–53 (2012)
Rzhanov, Y., Gu, F.: Enhancement of underwater videomosaics for post-processing. In: Proceedings of the Oceans MTS/IEEE OCEANS 2007, pp. 1–6. IEEE (2007)
Sawhney, H., Hsu, S., Kumar, R.: Robust video mosaicing through topology inference and local to global alignment. In: European Conference on Computer Vision, vol. II, pp. 103–119. Freiburg, Germany (1998)
Scaradozzi, D., Sorbi, L., Zoppini, F., Gambogi, P.: Tools and techniques for underwater archaeological sites documentation. In: Oceans - San Diego, 2013, pp. 1–6 (2013)
Schettini, R., Corchs, S.: Underwater image processing: state of the art of restoration and image enhancement methods. EURASIP Journal on Advances in Signal Processing 2010, 14 (2010)
SeaBotix LBV150-4 MiniROV. Retrieved from (2013). http://www.seabotix.com/products/lbv150-4.htm
Skiena, S.: Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. Addison-Wesley, Reading, MA (1990)
Castanheira: de Souza, R.H., Okutomi, M., Torii, A.: Real-time image mosaicing using non-rigid registration. In: Advances in Image and Video Technology, Lecture Notes in Computer Science, vol. 7087, pp 311–322 (2012)
Williams, S.B., Pizarro, O.R., Jakuba, M.V., Johnson, C.R., Barrett, N.S., Babcock, R.C., Kendrick, G.A., Steinberg, P.D., Heyward, A.J., Doherty, P.J., et al.: Monitoring of benthic reference sites: using an autonomous underwater vehicle. IEEE Robot. Autom. Mag. 19(1), 73–84 (2012)
Zhu, Z., Riseman, E., Hanson, A., Schultz, H.: An efficient method for geo-referenced video mosaicing for environmental monitoring. Mach. Vis. Appl. 16(4), 203–216 (2005)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Elibol, A., Kim, J., Gracias, N. et al. Fast Underwater Image Mosaicing through Submapping. J Intell Robot Syst 85, 167–187 (2017). https://doi.org/10.1007/s10846-016-0380-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10846-016-0380-x