Skip to main content

Advertisement

Log in

Toward Optimal Rendezvous of Multiple Underwater Gliders: 3D Path Planning with Combined Sawtooth and Spiral Motion

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

In this paper, a path planning system is proposed for optimal rendezvous of multiple underwater gliders in three-dimensional (3D) space. Inspired by the Dubins Paths consisting of straight lines and circular arcs, this paper presents the first attempt to extend the 3D Dubins curve to accommodate the characteristic glider motions include upwards and downwards straight glides in a sawtooth pattern and gliding in a vertical spiral. This modified 3D Dubins scheme is combined with genetic algorithm (GA), together with a rendezvous position selection scheme to find rendezvous trajectories for multiple gliders with minimal energy consumption over all participating vehicles. The properties and capabilities of the proposed path planning methodology are illustrated for several rendezvous mission scenarios. First, a simple application was performed for a single glider to rendezvous with a fix dock. Simulation results show the proposed planner is able to obtain more optimized trajectories when compared with the typical Dubins trajectory with nominal velocity. Additional representative simulations were run to analyse the performance of this path planner for multiple gliders rendezvous. The results demonstrate that the proposed path planner identifies the optimal rendezvous location and generates the corresponding rendezvous trajectories for multiple gliders that ensures they reach their destination with optimized energy consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stommel, H.: The SLOCUM mission. Oceanography 2(1), 22–25 (1989)

    Article  Google Scholar 

  2. Webb, D.C., Simonetti, P.J., Jones, C.P.: SLOCUM: An underwater glider propelled by environmental energy. IEEE J. Ocean. Eng. 26(4), 447–452 (2001)

    Article  Google Scholar 

  3. Sherman, J., Davis, R.E., Owens, W.B., Valdes, J.: The autonomous underwater glider Spray. IEEE J. Ocean. Eng. 26(4), 437–446 (2001)

    Article  Google Scholar 

  4. Eriksen, C.C., Osse, T.J., Light, R.D., Wen, T., Lehman, T.W., Sabin, P.L., Ballard, J.W., Chiodi, A.M.: Seaglider: A long-range autonomous underwater vehicle for oceanographic research. IEEE J. Ocean. Eng. 26(4), 424–436 (2001)

    Article  Google Scholar 

  5. Paley, D.A., Zhang, F., Leonard, N.E.: Cooperative control for ocean sampling: The glider coordinated control system. IEEE Trans. Control Syst. Technol. 16(4), 735–744 (2008)

    Article  Google Scholar 

  6. Xu, W., Liang, B., Li, C., Xu, Y.: Autonomous rendezvous and robotic capturing of non-cooperative target in space. Robotica 28(05), 705–718 (2009)

    Article  Google Scholar 

  7. Zeng, Z., Lammas, A., Sammut, K., He, F., Tang, Y., Ji, Q.: Path planning for rendezvous of multiple AUVs operating in a variable ocean. In: The 4th Annual IEEE International Conference on Cyber Technology in Automation, Control and Intelligent, pp. 451–456 (2014)

  8. Giron-Sierra, J.M., Fernandez-Prisuelos, J., Andres-Toro, B.: Genetic control planning of autonomous underwater vehicles for rendezvous scenarios. WSEAS Trans. Syst. 5(7), 1555–1563 (2006)

    Google Scholar 

  9. Giron-Sierra, J.M., Fernandez-Prisuelos, J., Andres-Toro, B.: Genetic control planning of autonomous underwater vehicles for rendezvous scenarios. WSEAS Trans. Syst. 5(7), 1555–1563 (2006)

  10. Zamuda, A., Sosa, J.D.H.: Differential evolution and underwater glider path planning applied to the short-term opportunistic sampling of dynamic mesoscale ocean structures. Appl. Soft Comput. 24, 95–108 (2014)

    Article  Google Scholar 

  11. Smith, R.N., Schwager, M., Smith S.L., et al.: Persistent ocean monitoring with underwater gliders: Adapting sampling resolution. J. Field Rob. 28(5), 714–741 (2011)

    Article  Google Scholar 

  12. Codiga, D.L.: A Marine Autonomous Surface Craft for Long-Duration, Spatially Explicit, Multidisciplinary Water Column Sampling in Coastal and Estuarine Systems. J. Atmos. Ocean. Technol. 32(3), 627–641 (2015)

    Article  Google Scholar 

  13. Zhu, X., Yu, J., Wang, X.: Sampling path planning of underwater glider for optimal energy consumption. ROBOT 33(3), 360–365 (2011)

    Article  Google Scholar 

  14. Shuangshuang Fan, C.A.W.: Dynamics of underwater gliders in currents. Ocean. Eng. 84, 249–258 (2014)

    Article  Google Scholar 

  15. Dos Santos, R.R., Steffen Jr., V., Saramago, S.D.F.P.: Robot path planning in a constrained workspace by using optimal control techniques. Multibody Sys. Dyn. 19(1-2), 159–177 (2008)

    Article  MATH  Google Scholar 

  16. Crauser, A., Mehlhorn, K., Meyer, U., Sanders, P.: A parallelization of Dijkstra’s shortest path algorithm, Mathematical Foundations of Computer Science, pp. 722–731. Springer, Berlin (1998)

    MATH  Google Scholar 

  17. Zeng, W., Church, R.L.: Finding shortest paths on real road networks: the case for A*. Int. J. Geogr. Inf. Sci. 23, 531–543 (2009)

    Article  Google Scholar 

  18. Ferguson, D., Stentz, A.: Using interpolation to improve path planning, The Field D* algorithm. J. F. Robot 23, 79–101 (2006)

    Article  MATH  Google Scholar 

  19. Staempfli, P., Jaermann, T., Crelier, G.R., Kollias, S., Valavanis, A., Boesiger, P.: Resolving fiber crossing using advanced fast marching tractography based on diffusion tensor imaging. Neuroimage 30, 110–20 (2006)

    Article  Google Scholar 

  20. Khatib, O.: Real-Time Obstacle avoidance for manipulators and mobile robots. Int. J. Rob. Res 5, 90–98 (1986)

    Article  Google Scholar 

  21. LaValle, S.M., Kuffner, Jr, J.J.: Rapidly-Exploring Random Trees: Progress and Prospects

  22. Zeng, Z., Lammas, A., Sammut, K., He, F., Tang, Y.: Shell space decomposition based path planning for AUVs operating in a variable environment. Ocean. Eng. 91, 181–195 (2014)

    Article  Google Scholar 

  23. Alvarez, A., Caiti, A., Onken, R.: Evolutionary path planning for autonomous underwater vehicles in a variable ocean. IEEE J. Ocean. Eng 29, 418–429 (2004)

    Article  Google Scholar 

  24. Nikolos, I.K., Valavanis, K.P., Tsourveloudis, N.C., Kostaras, A.N.: Evolutionary algorithm based offline/online path planner for UAV navigation. IEEE Trans. Syst. Man. Cybern. B. Cybern. 33, 898–912 (2003)

    Article  Google Scholar 

  25. Besada-Portas, E., Lopez-Orozco, J.A., de la Torre, L., de la Cruz, J.M.: Remote Control Laboratory Using EJS Applets and TwinCAT Programmable Logic Controllers. IEEE Trans. Educ. 56, 156–164 (2013)

    Article  Google Scholar 

  26. Roberge, V., Tarbouchi, M., Labonte, G.: Comparison of parallel genetic algorithm and particle swarm optimization for Real-Time UAV path planning. IEEE Trans. Ind. Informatics 9, 132–141 (2013)

    Article  Google Scholar 

  27. Furtuna, A.A., Balkcom, D.J.: Generalizing Dubins Curves: Minimum-time Sequences of Body-fixed Rotations and Translations in the Plane. Int. J. Rob. Res. 29, 703–726 (2010)

    Article  Google Scholar 

  28. Dubins, L.: On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents. Am. J. Math. 79, 497–516 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  29. Isaiah, P., Shima, T.: Motion planning algorithms for the Dubins Travelling Salesperson Problem. Automatica 53, 247–255 (2015)

    Article  MathSciNet  Google Scholar 

  30. Jurdjevic, V.: The Delauney-Dubins Problem, Geometric Control Theory and Sub-Riemannian Geometry, pp. 219–239. Springer International Publishing, Switzerland (2014)

    MATH  Google Scholar 

  31. Techy, L., Woolsey, C.A.: Minimum-time path planning for unmanned aerial vehicles in steady uniform winds. J. Guid. Control. Dyn. 32(6), 1736–1746 (2009)

    Article  Google Scholar 

  32. Shanmugavel, M., et al.: 3D Dubins sets based coordinated path planning for swarm of UAVs. In: AIAA Guidance, Navigation, and Control Conference and Exhibit, Keystone, CO (2006)

  33. Myung, H., Kuffner, J., Kanade, T.: Efficient two-phase 3d motion planning for small fixed-wing uavs, Robotics and Automation, 2007 IEEE International Conference on. IEEE (2007)

  34. Lin, Y., Saripalli, S.: Path planning using 3D dubins curve for unmanned aerial vehicles, Unmanned Aircraft Systems (ICUAS), 2014 International Conference on. IEEE (2014)

  35. Zhu, D., Huang, H., Yang, S.X.: Dynamic task assignment and path planning of multi-AUV system based on an improved self-organizing map and velocity synthesis method in three-dimensional underwater workspace. IEEE Trans. Cybern. 43(2), 504–514 (2013)

    Article  Google Scholar 

  36. Xiang, C., Zhu, D., Simon X.Y.: Multi-AUV target searching under ocean current based on PPSO and velocity synthesis algorithm. Underw. Technol. 33(1), 31–39 (2015)

    Article  Google Scholar 

  37. Mahmoudian, N., Geisbert, J., Woolsey, C.: Approximate analytical turning conditions for underwater gliders: Implications for motion control and path planning. IEEE J. Ocean. Eng. 35(1), 131–143 (2010)

    Article  Google Scholar 

  38. Mahmoudian, N., Geisert, J., Woolsey, C.: Dynamics and Control of Underwater Gliders I: Steady Motions. Technical Report, Virginia Polytechnic Institute and State University (2009)

  39. Kostov, V.P., Degtiariova-Kostova, E.V.: The planar motion with bounded derivative of the curvature and its suboptimal paths. Acta Math. Univ. Comenianae 64(2), 185–226 (1995)

    MATH  MathSciNet  Google Scholar 

  40. Boissonnat, J.-D., Crzo, A., Leblond, J.: Shortest paths of bounded curvature in the plane. Springer, Berlin (1993)

    Book  Google Scholar 

  41. Mahmoudian, N., Woolsey, C., Geisbert, J.: Steady turns and optimal paths for underwater gliders, Hilton Head, SC (2007)

  42. Graver, J.G., Leonard, N.E.: Underwater glider dynamics and control. 12th international symposium on unmanned untethered submersible technology, 1710–1742 (2001)

  43. Graver, J.G.: Underwater gliders: Dynamics, control and design[D]. Princeton University, Princeton (2005)

    Google Scholar 

  44. Zhang, S., Zhang, A., et al.: Y. J. Spiraling motion of underwater gliders: Modeling, analysis, and experimental results. Ocean Eng. 60, 1–13 (2013)

    Article  Google Scholar 

  45. Bhatta, P., Leonard, N.E.: Nonlinear gliding stability and control for vehicles with hydrodynamic forcing. Automatica 44, 1240–1250 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  46. Cao, J., Cao, J., Zeng, Z., Lian, L.: Dynamics and Approximate Semi-analytical Solution of an Underwater Glider in Spiral Motion, Indian Journal of Geo-Marine Sciences, (accepted)

  47. Carlson, S.E.: Genetic algorithm attributes for component selection. Res. Eng. Des 8, 33–51 (1996)

    Article  Google Scholar 

  48. Zeng, Z., Sammut, K., Lammas, A., He, F., Tang, Y.: Efficient Path Re-planning for AUVs Operating in Spatiotemporal Currents J Intell. Robot Syst (2014)

  49. Yazdani, A.M., Sammut, K., Lammas, A., Tang, Y. (eds.): Real-time quasi-optimal trajectory planning for autonomous underwater docking. In: IEEE International Symposium on Robotics and Intelligent Sensors (IRIS) (2015)

  50. Zadeh, S.M., Powers, D.M., Yazdani, A.M.: Development of an Autonomous Reactive Mission Scheduling and Path Planning (ARMSP) Architecture Using Evolutionary Algorithms for AUV Operation in a Sever Ocean Environment (2016). arXiv preprint arXiv:160501824

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zheng Zeng or Lian Lian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, J., Cao, J., Zeng, Z. et al. Toward Optimal Rendezvous of Multiple Underwater Gliders: 3D Path Planning with Combined Sawtooth and Spiral Motion. J Intell Robot Syst 85, 189–206 (2017). https://doi.org/10.1007/s10846-016-0382-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-016-0382-8

Keywords

Navigation