Skip to main content
Log in

Contact Stiffness Identification with Delay and Structural Compensation for Hardware-in-the-Loop Contact Simulator

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

The hardware-in-the-loop (HIL) simulation is necessary to test the contact dynamics of spacecraft in space. The stiffness parameter is important for the state recording and compliant control. A contact stiffness estimation method is proposed, where the force measurement delay and structural dynamics of the upper platform are compensated to guarantee the estimation accuracy. The force measurement delay and structural deformation of the upper platform lead to the delayed force signal and the position error respectively, and then the contact stiffness identification error. A phase lead based delay compensation is used to reconstruct the true contact force from the measured force. The structural deformation of the upper platform is compensated by a structural dynamics model to obtain the true contact position. Based on the compensated force and position signals, the stiffness identification is performed using the real time recursive least squares (RLS) method. The effectiveness of the proposed method is verified by simulations and experiments. In the experiments, the stiffness identification error is about ± 5 %, which is satisfactory for monitoring and control applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xu, W.F., Liang, B., Xu, Y.S.: Survey of modeling, planning, and ground verification of space robotic systems. Acta Astronaut. 68, 1629–1649 (2011)

    Article  Google Scholar 

  2. Flores-Abad, A., Ma, O., Pham, K., Ulrich, S.: A review of space robotics technologies for on-orbit servicing. Prog. Aerosp. Sci. 68, 1–26 (2014)

    Article  Google Scholar 

  3. Ma, O.: Contact dynamics modelling for the simulation of the space station manipulators handling payloads. In: Proceedings of the 1995 IEEE International Conference on Robotics and Automation, pp. 1252–1258 (1995)

  4. Ma, O., Wang, J.: Model order reduction for impact-contact dynamics simulations of flexible manipulators. Robotica 25, 397–407 (2007)

    Article  Google Scholar 

  5. Ma, O., Buhariwala, K., Roger, N., MacLean, J., Carr, R.: MDSF - a generic development and simulation facility for flexible, complex robotic systems. Robotica 15(01), 49–62 (1997)

    Article  Google Scholar 

  6. Yaskevich, A.: Real time math simulation of contact interaction during spacecraft docking and berthing. J. Mechanics Engineer. Auto. 4, 1–15 (2014)

    Google Scholar 

  7. Uyama, N., Fujii, Y., Nagaoka, K., Yoshida, K.: Experimental evaluation of contact-impact dynamics between a space robot with a compliant wrist and a free-flying object, International Symposium on Artificial Intelligence Robotics and Automation in Space. Turin, Italy (2012)

    Google Scholar 

  8. Romano, M., Friedman, D.A., Shay, T.J.: Laboratory experimentation of autonomous spacecraft approach and docking to a collaborative target. J. Spacecr. Rocket. 44(1), 164–173 (2007)

    Article  Google Scholar 

  9. Schwartz, J.L., Peck, M.A., Hall, C.D.: Historical review of air-bearing spacecraft simulators. J. Guid. Control. Dyn. 26(4), 513–522 (2003)

    Article  Google Scholar 

  10. Ma, O., Yang, G.: Validation of a satellite docking simulator using the SOSS experimental testbed. In: Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, October 9-15 (2006)

  11. Riley, D.R., Jaquet, B.M., Pennington, J.E., Brissenden, R.F.: Comparison of results of two simulations employing full-size visual-cue for pilot-controlled gemini-agena docking. NASA TN D-3687, 1–35 (1966)

  12. Hatch, H.G., Pennington, J.E., Cobb, J.B.: Dynamic simulation of lunar module docking with Apollo command module in lunar orbit. NASA TN D-3972, 1–26 (1967)

  13. Ma, O., Flores-Abad, A., Boge, T.: Use of industrial robots for hardware-in-the-loop simulation of satellite rendezvous and docking. Acta Astronaut. 81, 335–347 (2012)

    Article  Google Scholar 

  14. Boge, T., Ma, O.: Using advanced industrial robotics for spacecraft rendezvous and docking simulation. In: Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, pp. 1–4 (2011)

  15. Zebenay, M., Boge, T., Krenn, R., Choukroun, D.: Analytical and experimental stability investigation of a hardware-in-the-loop satellite docking simulator. In: Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, vol. 229, no. 4, pp. 666–681 (2015)

  16. Piedboeuf, J., De Carufel, J., Aghili, F., Dupuis, E.: Task verification facility for the Canadian special purpose dexterous manipulator. In: Proceedings of the 1999 IEEE International Conference on Robotics and Automation, Detroit, Michigan, pp. 1077–1083 (1999)

  17. Ma, O., Wang, J., Misra, S., Liu, M.: On the validation of SPDM task verification facility. J. Robot. Syst. 21(5), 219–235 (2004)

    Article  Google Scholar 

  18. Martin, É., Doyon, M., Gonthier, Y., Lange, C.: Validation process of the STVF hardware-in-the-loop simulation facility. In: Proceedings of The 8th International Symposium on Artifical Intelligence, Robotics and Automation in Space - iSAIRAS, Munich, Germany, 5–8 September (2005)

  19. Zhu, W.-H., Piedboeuf, J.-C., Gonthier, Y.: Emulation of a space robot using a hydraulic manipulator on ground. In: Proceedings of the 2002 IEEE International Conference on Robotics and Automation, Washington, DC, pp. 2315–2320, May (2002)

  20. Xu, W.F., Liang, B., Xu, Y.S., Li, C., Qiang, W.Y.: A ground experiment system of free-floating space robot for capturing space target. J. Intell. Robot. Syst. 48(2), 187–208 (2007)

    Article  Google Scholar 

  21. Sawada, H., Szuki, S., Oda, M.: A contact dynamics analysis of spacecraft capturing and rigidizing. In: The 17th Workshop on JAXA Astrodynamics and Flight Mechanics (2007)

  22. Mitchell, J.D., Cryan, S.P., Baker, K., Martin, T., Goode, R., Key, K.W., Manning, T., Chien, C.H.: Integrated docking simulation and testing with the Johnson space center six-degree-of-freedom dynamic test system. Space Technology and Applications International Forum - STAIF, 709–716 (2008)

  23. Lange, C., Martin, E., Piedboeuf, J.-C., Kövecses, J.: Towards Docking Emulation Using Hardware in the Loop Simulation with Parallel Platform. In: Proceedings of the Workshop on Fundamental Issues and Future Directions for Parallel Mechanisms and Manipulators, Quebec, Canada, pp. 1–4, October 3–4 (2002)

  24. Ananthakrishnan, S., Teders, R., Alder, K.: Role of estimation in real-time contact dynamics enhancement of space station engineering facility. IEEE Robot. Autom. Mag. 3(3), 20–28 (1996)

    Article  Google Scholar 

  25. Howsman, T.G., Glaese, J.: Space station docking mechanism dynamic testing. In: 15th Space Simulation Conference: Support the Highway to Space through Testing, Goddard Space Flight Center, NASA, pp. 168–175, Jan 01 (1988)

  26. Chang, T., Cong, D., Ye, Z., Han, J.: Time problems in HIL simulation for on-orbit docking and compensation. In: 2nd IEEE Conference on Industrial Electronics and Applications, Harbin, China, 23–25 May (2007)

  27. Takahashi, R., Ise, H., Konno, A., Uchiyama, M., Sato, D.: Hybrid simulation of a dual-arm space robot colliding with a floating object. In: Proceedings of the 2008 IEEE International Conference on Robotics and Automation, Pasadena, CA, USA, May 19–23 (2008)

  28. Osaki, K., Konno, A., Uchiyama, M.: Delay time compensation for a hybrid simulator. Adv. Robot. 24(8-9), 1081–1098 (2010)

    Article  Google Scholar 

  29. Abiko, S., Satake, Y., Jiang, X., Tsujita, T., Uchiyama, M.: Delay time compensation based on coefficient of restitution for collision hybrid motion simulator. Adv. Robot. 28(17), 1177–1188 (2014)

    Article  Google Scholar 

  30. Shimoji, H., Inoue, M., Tsuchiya, K., Niomiya, K., Nakatani, I., Kawaguchi, J.: Simulation system for a space robot using six-axis servos. Adv. Robot. 6(2), 179–196 (1991)

    Article  Google Scholar 

  31. Zebenay, M., Boge, T., Choukroun, D.: Modeling, stability analysis, and testing of a hybrid docking simulator. In: AIAA Guidance, Navigation, and Control (GNC) Conference, Boston, MA, USA, 19-22 Aug (2013)

  32. Coutinho, F., Cortesão. R.: Online stiffness estimation for robotic tasks with force observers,’. Control. Eng. Pract. 24, 92–105 (2014)

    Article  Google Scholar 

  33. Qi, C. K., Zhao, X. C., Gao, F., Ren, A. Y., Sun. Q.: Contact stiffness and damping identification for hardware-in-the-loop contact simulator with measurement delay compensation. Acta Astronautica 123, 171–180 (2016)

    Article  Google Scholar 

  34. Cao, R., Gao, F., Zhang, Y., Pan, D.: A key point dimensional design method of a 6-DOF parallel manipulator for a given workspace. Mech. Mach. Theory 85, 1–13 (2015)

    Article  Google Scholar 

  35. Zhang, J.Z., Gao, F., Yu, H.N., Zhao, X.C.: Use of an orthogonal parallel robot with redundant actuation as an earthquake simulator and its experiments (2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenkun Qi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, A., Qi, C., Gao, F. et al. Contact Stiffness Identification with Delay and Structural Compensation for Hardware-in-the-Loop Contact Simulator. J Intell Robot Syst 86, 325–333 (2017). https://doi.org/10.1007/s10846-016-0432-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-016-0432-2

Keywords

Navigation