Skip to main content

Advertisement

Log in

Multi-channel Fusion Based Adaptive Gait Trajectory Generation Using Wearable Sensors

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper presents a method to regenerate lower limb joint angle trajectories during gait cycle by judging human intention using wearable sensor system. Myoelectric signals from user are used to detect the intention of gait initiation and gait phases. Multi-channel redundant fusion technique is implemented to obtain a robust stride time and gait phase calculation algorithm. Joint trajectories corresponding to particular gait events and phases are regenerated using a Radial basis neural network. The network is trained with joint angle data measured by Inertial Measurement Unit (IMU) from users with varying anthropomorphic features. Generated trajectory is adaptive to anthropomorphic as well as gait velocity variation. Contribution of this paper is in development of a wearable sensor system, multi-channel redundant fusion to calculate stride time and an adaptive gait trajectory generation algorithm. The proposed method of trajectory generation is used to regenerate lower limb joint motion in sagittal plane for wearable robotic devices like prosthesis and active lower limb exoskeleton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tingfang, Y., Marco, C., Calogero, O., Nicola, V.: Review of assistive strategies in powered lower-limb orthoses and exoskeletons. Robot. Auton. Syst. 64, 120–136 (2015)

    Article  Google Scholar 

  2. Slavka, V., Patrik, K., Marcel, J.: Wearable lower limb robotics: a review. Biocybernatics Biomed. Eng. 3, 96–105 (2013)

    Google Scholar 

  3. Atushi, T., Ryota, K., Yasuhisa, H., Yoshiyuki, S.: Sit-to-stand and stand-to-sit transfer support for complete paraplegic patients with robot suit HAL. Adv. Robot. 24, 1615–1638 (2010)

    Article  Google Scholar 

  4. Zoss, A., Kazerooni, H., Chu, A.: Biomechanical design of the Berkeley Lower Extremity Exoskeleton (BLEEX). IEEE/ASME Trans. Mechatron. 11(2), 128–138 (2006)

    Article  Google Scholar 

  5. Tommaso, L., Maria, C., Sunil, A.: Powered hip exoskeletons can reduce the users hip and ankle muscle activations during walking. IEEE Trans. Neural Syst. Rehabil. Eng. 21(6), 938–948 (2013)

    Article  Google Scholar 

  6. Jan, V., Rik, K., Edsko, H., Ralf, E., Edwin, V., Herman, V.: Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 15(3), 379–386 (2007)

    Article  Google Scholar 

  7. Vallery, H., Van, A., Buss, M., Herman, V.: Reference trajectory generation for rehabilitation robots: Complementary limb motion estimation. IEEE Trans. Neural Syst. Rehabil. Eng. 17(1), 23–30 (2009)

  8. Suzuki, K., Mito, G., Kawamoto, H., Hasegawa, Y., Sankai, Y.: Intention based walking support for paraplegia patients with robot suit HAL. Adv. Robot. 21(12), 1441–1469 (2007)

    Google Scholar 

  9. Subhash, M.: Wearable Sensors for Human Activity Monitoring: A Review. IEEE Sensors J. 15(3), 13–21 (2015)

    Google Scholar 

  10. Edwards, J.: Wireless sensors relay medical insight to patients and caregivers [special reports]. IEEE Signal Process. Mag. 29(3), 8–12 (2012)

    Article  Google Scholar 

  11. Malhi, K., Subhash, M., Schnepper, J., Haefke, M., Ewald, H.: A Zigbee-based wearable physiological parameters monitoring system. IEEE Sensors J. 12(3), 423–430 (2012)

    Article  Google Scholar 

  12. Weijun, T., Tao, L., Rencheng, Z., Hutian, F.: Gait analysis using wearable sensors. Sensors J. 12, 2255–2283 (2012). doi:10.3390/s120202255

    Article  Google Scholar 

  13. Shyamal, P., Hyung, P., Paolo, B., Leighton, C., Mary, R.: A review of wearable sensors and systems with application in rehabilitation. J. Neuro Eng. Rehabil. 9(21) (2012). http://www.jneuroengrehab.com/content/9/1/21

  14. Silva, J., Heim, W., Chau, T.: A self-contained, mechanomyography-driven externally powered prosthesis. Arch. Phys. Med. Rehabil. 86(10), 2066–2070 (2005)

  15. Fukuda, O., Tsuji, T., Ohtsuka, A., Kaneko, M.: A EMG-based human-robot interface for rehabilitation aid. IEEE Int. Conf. Robot. Autom. 4, 3492–3497 (1998)

    Article  Google Scholar 

  16. Benedetti, M., Bonato, P., Catani, F., Knaflitz, M., Marcacci, M., Simoncini, L.: Myoelectric activation pattern during gait in total knee replacement: relationship with kinematics, kinetics and clinical outcome. IEEE Trans. Rehabil. Eng. 7, 140–149 (1999)

    Article  Google Scholar 

  17. Wege, A., Zimmermann, A.: Electromyography sensor based control for a hand exoskeleton. IEEE International Conference on Robotics and Biomimetics. pp 1470 −1475 (2007)

  18. Mulas, M., Folgheraiter, M., Gini, G.: An EMG-controlled exoskeleton for hand rehabilitation. International Conference on Rehabilitation Robotics. pp 371 −374 (2005)

  19. Abdul Hadi, R., Aladin, Z., Rezaul, B., Yufridin, W.: Foot plantar pressure measurement system: a review. Sensors 12, 9884–9912 (2012). doi:10.3390/s120709884

    Article  Google Scholar 

  20. Domen, N., Peter, R., Stefano, M., Maria De, R., Marco, D., Janez, P., Tadej, B., Tommaso, L., Nicola, V., Maria, C., Marko, M.: Automated detection of gait initiation and termination using wearable sensors. Med. Eng. Phys. 35, 1713–1720 (2013)

    Article  Google Scholar 

  21. Laiyin, Q., Hao, M., Wei-Hsin, L.: Insole plantar pressure systems in the gait analysis of post-stroke rehabilitation proceeding of the 2015 IEEE International Conference on Information and Automation. Lijiang, China (2015)

  22. Morris, S., Paradiso, J.: Shoe-integrated sensor system for wireless gait analysis and real-time feedback gait analysis and real-time feedback, Proceedings of 2nd Joint EMBS/BMES Conference, 2468–2469 (2002)

  23. Mueller, M., Strube, M.: Generalizability of in-shoe peak pressure measures using the F-scan system. Clin. Biomech. 11(3), 159–164 (1996)

    Article  Google Scholar 

  24. Ramanathan, A., Kiran, P., Arnold, G., Wang, W., Abboud, R.: Repeatability of the Pedar-X in-shoe pressure measuring system. Foot Ankle Surg. 16(2), 70–73 (2010)

    Article  Google Scholar 

  25. Thomas, S., Jrg, R., Thomas, S.: IMU-Based joint angle measurement for gait analysis. Sensors 14, 6891–6909 (2014). doi:10.3390/s140406891

    Article  Google Scholar 

  26. Carlos, C., Ariel, B., Luis, R., Melisa, F., Alfonso, S., Anselmo, F.: Development of a wearable ZigBee sensor system for upper limb rehabilitation robotics. The Fourth IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics Roma Italy (2012)

  27. Vincent, B., Claudia, M., Philippe, F., Aurelio, C.: Real-time estimate of body kinematics during a planar squat task using a single inertial measurement unit. IEEE Trans. Biomed. Eng. 60(7), 1920–1926 (2013)

    Article  Google Scholar 

  28. Ju-Won, L., Gun-Ki, L.: Gait angle prediction for lower limb orthotics and prostheses using an EMG signal and neural networks. Int. J. Control. Autom. Syst. 3(2), 152–158 (2005)

    Google Scholar 

  29. Wang, L., Buchanan, T.: Prediction of joint moments using a neural network mode of activations from EMG signals. IEEE Trans. Rehabilitation Eng. 10(1), 30–37 (2002)

    Google Scholar 

  30. Genci, C., Yasuo, N., Leonard, B., Kazuhitsa, M.: Real time gait generation for autonomous humanoid robots: A case study for walking. Robotics and Autonomous Systems 42: 107 −116 (2013)

  31. Muhammad, A., Rushdi, A.: Partially-redundant systems: Examples, reliability, and life expectancy. IMACST. 1(1) (2010)

  32. Biswas, K., Mazumder, O., Kundu, A.: Multichannel fused EMG based biofeedback system with virtual reality for gait rehabilitation. IEEE Proceedings of 4th International Conference on Intelligent Human Computer Interaction, India (2012)

  33. Kundu, A., Mazumder, O., Chattaraj, R., Bhaumik, S., Lenka, P.: Trajectory generation for myoelectrically controlled lower limb active knee exoskeleton. Seventh International Conference on Contemporary Computing, India (2014)

  34. Vaughan, C., Davis, B., Connar, J.: Dynamics of human gait, 2nd edition, Kiboho publishers, Capetown, South Africa

  35. Inaba Rubber Co Ltd. www.inaba-rubber.co.jp/en

  36. www.sparkfun.com/products/10736

  37. MATLAB. www.mathwork.com

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oishee Mazumder.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazumder, O., Kundu, A.S., Lenka, P.K. et al. Multi-channel Fusion Based Adaptive Gait Trajectory Generation Using Wearable Sensors. J Intell Robot Syst 86, 335–351 (2017). https://doi.org/10.1007/s10846-016-0436-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-016-0436-y

Keywords

Navigation