Abstract
Motion control design plays a crucial role in autonomous vehicles. Mainly, these systems operate in conditions of under-actuation, which make the control a serious task especially in presence of practical constraints. The main objective within this paper is to ensure the tracking of 3D reference trajectory overcoming some of the issues related to the control of multi-rotor vehicles (such as underactuation, robustness, limited power, accuracy, overshoot, etc.). Therefore, a control scheme for Vertical Take Off and Landing (VTOL) multi-rotor Unmanned Aerial Vehicle (UAV) is designed, applying the Interconnection and Damping Assignment-Passivity Based Control (IDA-PBC) technique. As reference model based technique, the control specifications are readily met by fixing a desired dynamic model, which is a major advantage of the technique. Moreover, a port −controlled Hamiltonian representation is exploited in order to point out the physical properties of the system such as its internal energy. This latter is exploited, as a fitness function for an optimization algorithm, in order to decrease the consumed energy especially at the take-off step and allows the tuning of the controller parameters. The numerical simulations have shown satisfactory results that support the claims using nominal system model or disturbed model. The designed controller has been implemented on a real vehicle for which one demonstrates, in an indoor area manipulation, the effectiveness of the proposed control strategy.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bouabdallah, S., Noth, A., Siegwart, R.: PID vs LQ control techniques applied to an indoor micro quadrotor. In: IROS 2004 Proceedings of the IEEE RSJ International Conference on Intelligent Robots and Systems, vol. 3, pp. 2451–2456 (2004)
Wang, C., Song, B., Huang, P., Tang, C.: Trajectory Tracking Control for Quadrotor Robot Subject to Payload Variation and Wind Gust Disturbance. J. Intell. Robot. Syst. 83(2), 315–333 (2016). doi:10.1007/s10846-016-0333-4
Izaguirre-Espinosa, C., Muñoz-Vázquez, A.J., Sánchez-Orta, A., Parra-Vega, V., Sanahuja, G.: Fractional attitude-reactive control for robust quadrotor position stabilization without resolving underactuation. Control. Eng. Pract. 53, 47–56 (2016). doi:10.1016/j.conengprac.2016.04.016. http://www.sciencedirect.com/science/article/pii/S0967066116300867
Dong, W., Gu, G.-Y., Zhu, X., Ding, H.: A high-performance flight control approach for quadrotors using a modified active disturbance rejection technique. Robot. Auton. Syst. 83, 177–187 (2016). doi:10.1016/j.robot.2016.05.005. http://www.sciencedirect.com/science/article/pii/ S0921889015300920
Abaspour, A., Sadati, S.H., Sadeghi, M.: Nonlinear optimized adaptive trajectory control of helicopter. Control Theory and Technology 13(4), 297–310 (2015). doi:10.1007/s11768-015-4062-1. http://link.springer.com/article/10.1007/s11768-015-4062-1
Lee, D., Franchi, A., Son, H.I., Ha, C., Bülthoff, H.H., Giordano, P.R.: Semiautonomous Haptic Teleoperation Control Architecture of Multiple Unmanned Aerial Vehicles. IEEE/ASME Transactions on Mechatronics 18(4), 1334–1345 (2013). doi:10.1109/TMECH.2013.2263963
Bourquardez, O., Mahony, R., Guenard, N., Chaumette, F., Hamel, T., Eck, L.: Image-Based Visual Servo Control of the Translation Kinematics of a Quadrotor Aerial Vehicle. IEEE Trans. Robot. 25(3), 743–749 (2009). doi:10.1109/TRO.2008.2011419
Augugliaro, F., D’Andrea, R.: Admittance control for physical human-quadrocopter interaction (2013)
Lippiello, V., Ruggiero, F.: Exploiting redundancy in Cartesian impedance control of UAVs equipped with a robotic arm. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3768–3773 (2012), doi:10.1109/IROS.2012.6386021
Pounds, P.E.I., Dollar, A.M.: UAV rotorcraft in compliant contact: Stability analysis and simulation. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2660–2667 (2011), doi:10.1109/IROS.2011.6095086
Fumagalli, M., Naldi, R., Macchelli, A., Carloni, R., Stramigioli, S., Marconi, L.: Modeling and control of a flying robot for contact inspection. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3532–3537 (2012), doi:10.1109/IROS.2012.6385917
Kalantari, A., Spenko, M.: Design and experimental validation of HyTAQ, a Hybrid Terrestrial and Aerial Quadrotor. In: 2013 IEEE International Conference on Robotics and Automation (ICRA), pp. 4445–4450 (2013), doi:10.1109/ICRA.2013.6631208
Prajna, S., van der Schaft, A., Meinsma, G.: An LMI approach to stabilization of linear port-controlled Hamiltonian systems. Syst. Control Lett. 45(5), 371–385 (2002). doi:10.1016/S0167-6911(01)00195-5. http://www.sciencedirect.com/science/article/pii/S0167691101001955
Donaire, A., Junco, S.: On the addition of integral action to port-controlled Hamiltonian systems. Automatica 45(8), 1910–1916 (2009). doi:10.1016/j.automatica.2009.04.006. http://www.sciencedirect.com/science/article/pii/S0005109809002076
Schaft, A.v.d.: L2 - Gain and Passivity Techniques in Nonlinear Control. Springer Science & Business Media. google-Books-ID: AInfBwAAQBAJ (2012)
Ortega, R., Schaft, A.J.V.D., Mareels, I., Maschke, B.: Putting energy back in control. IEEE Control. Syst. 21(2), 18–33 (2001). doi:10.1109/37.915398
Ortega, R., García-Canseco, E.: Interconnection and Damping Assignment Passivity-Based Control: A Survey. Eur. J. Control. 10(5), 432–450 (2004). doi:10.3166/ejc.10.432-450
Nageshrao, S., Lopes, G., Jeltsema, D., Babuška, R.: Interconnection and Damping Assignment Control via Reinforcement Learning. IFAC Proceedings 47(3), 1760–1765 (2014)
González, H., Duarte-Mermoud, M.A., Pelissier, I., Travieso-Torres, J.C., Ortega, R.: A novel induction motor control scheme using IDA-PBC. J. Control Theory Appl. 6(1), 59–68 (2008). doi:10.1007/s11768-008-7193-9
Kotyczka, P., Koch, G., Pellegrini, E., Lohmann, B.: 8Th IFAC Symposium on Nonlinear Control SystemsTransparent Parametrization of Nonlinear IDA-PBC for a Hydraulic Actuator. IFAC Proceedings 43(14), 1122–1127 (2010)
Neves, L.C., Paim, G.V., Queinnec, I., Moreno, U.F., De Pieri, E.R.: Passivity and Power Based Control of a Robot with Parallel Architecture*. IFAC Proceedings 44(1), 14608–14613 (2011). http://www.sciencedirect.com/science/article/pii/S1474667016459768
Valentinis, F., Donaire, A., Perez, T.: Energy-based motion control of a slender hull unmanned underwater vehicle. Ocean Eng. 104, 604–616 (2015). http://www.sciencedirect.com/science/article/pii/ S0029801815001900
Ryalat, M., Laila, D.S.: A simplified IDA-PBC design for underactuated mechanical systems with applications. Eur. J. Control. 27, 1–16 (2016). doi:10.1016/j.ejcon.2015.12.001. http://linkinghub.elsevier.com/retrieve/pii/S0947358015001296
Mersha, A.Y., Carloni, R., Stramigioli, S.: Port-based modeling and control of underactuated aerial vehicles. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 14–19 (2011)
Muñoz, L.E., Santos, O., Castillo, P., Fantoni, I.: Energy-based nonlinear control for a quadrotor rotorcraft. In: 2013 American Control Conference, pp. 1177–1182 (2013), doi:10.1109/ACC.2013.6579995
Guerrero, M.E., Mercado, D.A., Lozano, R., García, C.D.: Passivity based control for a quadrotor UAV transporting a cable-suspended payload with minimum swing. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 6718–6723 (2015), doi:10.1109/CDC.2015.7403277
Bouzid, Y., Siguerdidjane, H., Bestaoui, Y.: Real time Autopilot based on Immersion & Invariance for Autonomous Aerial Vehicle. In: 20Th IFAC Symposium on Automatic Control in Aerospace -IFAC-PapersOnLine, vol. 49, no.17, pp. 176–181, 2016.
Bouzid, Y., Siguerdidjane, H., Bestaoui, Y.: Improved 3d trajectory tracking by Nonlinear Internal Model-Feedback linearization control strategy for autonomous systems 49(9), 13–18 (2016). doi:10.1016/j.ifacol.2016.07.480. IFAC-PapersOnLine http://www.sciencedirect.com/science/article/pii/S2405896316306929
Bouzid, Y., Siguerdidjane, H., Bestaoui, Y.: Hierarchical Autopilot Design based on Immersion & Invariance and Nonlinear Internal Model Tracking Controllers for Autonomous system 49(5), 103–108 (2016). doi:10.1016/j.ifacol.2016.07.097. IFAC-PapersOnLine http://www.sciencedirect.com/science/article/pii/S2405896316302932
Huang, H., Hoffmann, G.M., Waslander, S.L., Tomlin , C.J.: Aerodynamics and control of autonomous quadrotor helicopters in aggressive maneuvering. In: IEEE International Conference on Robotics and Automation 2009, ICRA’09, pp. 3277–3282 (2009), doi:10.1109/ROBOT.2009.5152561
Hoffmann, G.M., Huang, H., Waslander, S.L., Tomlin, C.J.: Precision flight control for a multi-vehicle quadrotor helicopter testbed. Control. Eng. Pract. 19 (9), 1023–1036 (2011). doi:10.1016/j.conengprac.2011.04.005. http://www.sciencedirect.com/science/article/pii/ S0967066111000712
Gupta, N.K., Goel, R., Ananthkrishnan, N.: Design/Development of Mini/Micro Air Vehicles through Modelling and Simulation: Case of an Autonomous Quadrotor. Def. Sc. Jl. 61(4), 337–345 (2011). doi:10.14429/dsj.61.1086. http://publications.drdo.gov.in/ojs/index.php/dsj/article/view/ 1086
Houck, C.R., Joines, J.A., Kay, M.G.: A Genetic Algorithm for Function Optimization: A Matlab implementation (1996)
Engel, J., Sturm, J., Cremers, D.: Accurate Figure Flying with a Quadrocopter Using Onboard Visual and Inertial Sensing. In: Proceedings of the Workshop on Visual Control of Mobile Robots (ViCoMoR) at the IEEE/RJS International Conference on Intelligent Robot Systems (IROS), vol. 320 (2012)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Bouzid, Y., Siguerdidjane, H., Bestaoui, Y. et al. Energy Based 3D Autopilot for VTOL UAV Under Guidance & Navigation Constraints. J Intell Robot Syst 87, 341–362 (2017). https://doi.org/10.1007/s10846-016-0441-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10846-016-0441-1