Abstract
This paper presents the design and control of a robotic walker based on a two-wheeled inverted pendulum (TWIP) developed to assist mobility-impaired users with balance and stability. Traditional walkers use three or more contact points to create a solid base to augment a user’s balance. A TWIP walker can support a user’s balance through balance control. A robotic walker prototype has been developed to illustrate its ability to assist human gait and exploit the maneuverability of a two-wheeled mobile platform compared to multi-wheeled system. Presented is a linearized mathematical model of the two-wheeled system using Newtonian mechanics. A control strategy consisting of a decoupled linear quadratic regulator (LQR) controller and two state variable controllers is developed to stabilize the platform and regulate its behavior with robust disturbance rejection performance. Results are shown using a physical prototype to demonstrate the ability of the decoupled LQR controller to robustly balance the platform while the state variable controllers regulate the platform’s position with smooth, minimum jerk, control when used by a person during standing and walking.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Greenblatt, A.: Aging Population. CQ Res. 21(25), 577–600 (2011)
Ortman, J.M., Velkoff, V.A., Hogan, H.: An Aging Nation: The Older Population in the United States (2014)
Greenblatt, A.: Aging Baby Boomers. CQ Res. 17(37), 865–888 (2007)
Da Silva, A.R., Sup, F.: Design and Control of a Two-Wheeled Robotic Walker for Balance Enhancement. IEEE Int. Conf. Rehabil. Robot., 6 (2013)
Lee, G., Ohnuma, T., Chong, N.Y.: Design and Control of JAIST Active Robotic Walker. J. Intell. Serv. Robot. 3(3), 125–135 (2010)
Barrué, C., Annicchiarico, R., Cortés, U., Martínez-Velasco, A., Martín, E.X., Campana, F., Caltagirone, C.: The i-Walker: An Intelligent Pedestrian Mobility Aid. Comput. Intell. Healthc. 4, 103–123 (2010)
Cifuentes, C.A., Rodriguez, C., Frizera-Neto, A., Bastos-Filho, T.F., Carelli, R.: Multimodal Human–Robot Interaction for Walker-Assisted Gait. IEEE Syst. J., 1–11 (2014)
Kulyukin, V., Kutiyanawala, A., LoPresti, E., Matthews, J., Simpson, R.: iWalker: Toward a Rollator-Mounted Wayfinding System for the Elderly. 2008 IEEE Int. Conf. RFID, 303–311 (2008)
Morris, A., Donamukkala, R., Kapuria, A., Steinfeld, A., Matthews, J.T., Dunbar-Jacob, J., Thrun, S.: A Robotic Walker That Provides Guidance. Proc. 2003 IEEE Int. Conf. Robot. Autom., 25–30 (2003)
Rodriguez-Losada, D., Matia, F., Jimenez, A., Galan, R., Lacey, G.: Implementing Map Based Navigation in Guido, the Robotic SmartWalker. Int. Conf. Robot. Autom., 3390–3395 (2005)
Lacey, G. J., Rodriguez-Losada, D.: A Smart Walker for the Blind. IEEE Robot. Autom. Mag., no. December, 75–83 (2008)
Graf, B.: Reactive Navigation of an Intelligent Robotic Walking Aid. Proc. 10th IEEE Int. Work. Robot Hum. Interact. Commun. 2001, 353–358 (2001)
MacNamara, S., Lacey, G.: A Smart Walker for the Frail Visually Impaired. Proc. 2000 IEEE Int. Conf. Robot. Autom., 1354–1359 (2000)
Jun, H.-G., Chang, Y.-Y., Dan, B.-J., Jo, B.-R., Min, B.-H., Yang, H., Song, W.-K., Kim, J.: Walking and sit-to-stand support system for elderly and disabled, 2011. IEEE Int. Conf. Rehabil. Robot., 1–5 (2011)
Neto, A.F., Ceres, R., Rocon, E., Pons, J.L.: Empowering and Assisting Natural Human Mobility: The Simbiosis Walker. Int. J. Adv. Robot. Syst. 8(3), 34–50 (2011)
Chuy Jr, O., Hirata, Y., Wang, Z., Kosuge, K.: Approach in Assisting a Sit-to-Stand Movement Using Robotic Walking Support System. Proc. 2006 IEEE/RSJ Int. Conf. Intell. Robot. Syst., 4343–4348 (2006)
Schneider, J., Irgenfried, S., Stork, W., Wörn, H.: A Multimodal Human Machine Interface for a Robotic Mobility Aid. Proc. 6th Int. Conf. Autom. Robot. Appl. 1, 289–294 (2015)
Hirata, Y., Komatsuda, S., Kosuge, K.: Fall Prevention Control of Passive Intelligent Walker Based on Human Model, 2008 IEEE/RSJ. Int. Conf. Int.ll. Robot. Syst., 1222–1228 (2008)
Geravand, M., Peer, A.: Safety Constrained Motion Control of Mobility Assistive Robots, 2014 5th. IEEE RAS EMBS Int. Conf. Biomed. Robot. Biomechatronics 1, 1073–1078 (2014)
Nakagawa, S., Hasegawa, Y., Fukuda, T., Kondo, I., Tanimoto, M., Di, P., Huang, J., Huang, Q.: Tandem Stance Avoidance Using Adaptive and Asymmetric Admittance Control for Fall Prevention. IEEE Trans. Neural Syst. Rehabil. Eng., 1–9 (2015)
Takahara, S., Jeong, S.: Prototype Design of Robotic Mobility Aid to Assist Elderly’s Standing-Sitting, Walking, and Wheelchair Driving in Daily Life, 2014 14th. Int. Conf. Control. Autom. Syst. (ICCAS) 2014, 470–473 (2014)
Choi, D., Kim, M., Oh, J.-H.: Development of a Rapid Mobile Robot with a Multi-Degree-of-Freedom Inverted Pendulum Using the Model-Based Zero-Moment Point Stabilization Method. Adv. Robot. 26 (5–6), 515–535 (2012)
Grasser, F., D’Arrigo, A., Colombi, S., Rufer, A.C.: JOE: A Mobile, Inverted Pendulum. IEEE Trans. Ind. Electron. 49(1), 107–114 (2002)
Li, J., Gao, X., Huang, Q., Du, Q., Duan, X.: Mechanical Design and Dynamic Modeling of a Two-Wheeled Inverted Pendulum Mobile Robot, 2007. IEEE Int. Conf. Autom. Logist., 1614–1619 (2007)
Lin, S., Tsai, C.-C., Huang, H.-C.: Nonlinear Adaptive Sliding-Mode Control Design for Two-Wheeled Human Transportation Vehicle. Proc. 2009 IEEE Int. Conf. Syst. Man, Cybern., 1965–1970 (2009)
Jones, D.R., Stol, K.A.: Modelling and Stability Control of Two-Wheeled Robots in Low-Traction Environments. Australas. Conf. Robot. Autom., 1–9 (2010)
Kalra, S., Patel, D., Stol, K.: Design and Hybrid Control of a Two Wheeled Robotic Platform. Australas. Conf. Robot. Autom., 1–7 (2007)
Do, K.D., Seet, G.: Motion Control of a Two-Wheeled Mobile Vehicle with an Inverted Pendulum. J. Intell. Robot. Syst. 60(3–4), 577–605 (2010)
Ahmad, S., Tokhi, M.O.: Linear Quadratic Regulator (LQR) Approach for Lifting and Stabilizing of Two-Wheeled Wheelchair, 2011 4th. Int. Conf. Mechatronics, no. May, 1–6 (2011)
Huang, C., Wang, W., Chiu, C.: Design and Implementation of Fuzzy Control on a Two-Wheel Inverted Pendulum. IEEE Trans. Ind. Electron. 58(7), 2988–3001 (2011)
Ren, T.-J., Chen, T.-C., Chen, C.-J.: Motion control for a two-wheeled vehicle using a self-tuning PID controller. Control Eng. Pract. 16(3), 365–375 (2008)
Jeong, S.H., Takahashi, T.: Wheeled Inverted Pendulum Type Assistant Robot: Inverted Mobile, Standing, and Sitting Motions, 2007 IEEE/RSJ. Int. Conf. Int.ll. Robot. Syst., 1932–1937 (2007)
Xu, C., Li, M.: The System Design and LQR control of a Two-wheels Self-balancing Mobile Robot, 2011. Int. Conf. Electr. Control Eng., 2786–2789 (2011)
Goher, K.M., Tokhi, M.O.: Development, Modeling and Control of a Novel Design of Two-Wheeled Machines. Cyber Journals Multidiscip. Journals Sci. Technol. J. Sel. Areas Robot. Control, 6–16 (2010)
Kahani, R., Moaveni, B.: Control of Two-Wheels Inverted Pendulum Using Parallel Distributed Compensation and Fuzzy Linear Quadratic Regulator. 2011 3rd Int. Conf. Comput. Model. Simul., 312–317 (2011)
Abeygunawardhana, P.K.W., Murakami, T.: Vibration Suppression of Two-Wheel Mobile Manipulator Using Resonance-Ratio-Control-Based Null-Space Control. IEEE Trans. Ind. Electron. 57(12), 4137–4146 (2010)
Goher, K.M., Tokhi, M.O.: A New Configuration of Two-Wheeled Inverted Pendulum: A Lagrangian-Based Mathematical Approach. J. Sel. Areas Robot. Control, 1–5 (2010)
Li, Z., Zhu, Y., Mo, T.: Adaptive Robust Dynamic Balance and Motion Control of Mobile Wheeled Inverted Pendulums. Proc. 7th World Congr. Intell. Control Autom. 1, 933–938 (2008)
Kim, Y., Kim, S.H., Kwak, Y.K.: Dynamic Analysis of a Nonholonomic Two-Wheeled Inverted Pendulum Robot. J. Intell. Robot. Syst. 44(1), 25–46 (2005)
Muhammad, M., Buyamin, S., Ahmad, M.N., Nawawi, S.W.: Dynamic Modeling and Analysis of a Two-Wheeled Inverted Pendulum Robot. 2011 Third Int. Conf. Comput. Int.ll. Model. Simul., 159–164 (2011)
Nawawi, S.W., Ahmad, M.N., Osman, J.H.S.: Development of a Two-Wheeled Inverted Pendulum Mobile Robot. 5th Student Conf. Res. Dev., 1–5 (2007)
Lee, S.J., Bae, Y.G., Jung, S.: Object Handling Control between a Balancing Robot and a Human Operator, 2012. IEEE Int. Symp. Ind. Electron., 931–936 (2012)
Lee, S.J., Jung, S.: Experimental Studies of an Object Handling Task by Force Control between Two Balancing Robots. 11th Int. Conf. Control. Autom. Syst., 197–201 (2011)
Ruan, X., Chen, J.: H8 Robust Control of Self-Balancing Two-Wheeled Robot. Proc. 8th World Congr. Intell. Control Autom., 6524–6527 (2010)
Hatakeyama, N., Shimada, A.: Movement Control using Zero Dynamics of Two-Wheeled Inverted Pendulum Robot. 2008 10th IEEE Int. Work. Adv. Motion Control, 38–43 (2008)
Shimada, A., Hatakeyama, N.: Movement control of two-wheeled inverted pendulum robots considering robustness. SICE Annu. Conf. 2008, 3361–3366 (2008)
Rai, R.K., Singh, A.K.: Design and Simulation of Different Controllers for Stabilizing Inverted Pendulum System. Int. J. Eng. Res. Appl. 4(7), 236–242 (2014)
Razmjooy, N., Madadi, A., Alikhani, H.-R., Mohseni, M.: Comparison of LQR and Pole Placement Design Controllers for Controlling the Inverted Pendulum. J. World’s Electr. Eng. Technol. 3 (2), 83–88 (2014)
Nasir, A.N.K., Ahmad, M.A., Ismail, R.M.T.R.: The Control of a Highly Nonlinear Two-wheels Balancing Robot: A Comparative Assessment between LQR and PID-PID Control Schemes. World Acad. Sci. Eng. Technol. 4(10), 176–181 (2010)
Junfeng, W., Wanying, Z.: Research on Control Method of Two-wheeled Self-balancing Robot, 2011 Fourth. Int. Conf. Int.ll. Comput. Technol. Autom., 476–479 (2011)
Krishna, B., Chandran, D., George, V.I., Thirunavukkarasu, I.: Modeling and Performance Comparison of Triple PID and LQR Controllers for Parallel Rotary Double Inverted Pendulum. Int. J. Emerg. Trends Electr. Electron. 11(2), 145–150 (2015)
Hamza, M., Zaka-ur-Rehman, Zahid, Q., Tahir, F., Khalid, Z.: Real-Time Control of an Inverted Pendulum: A Comparative Study, 2011 Front. Inf. Technol., 183– 188 (2011)
Levine, W.S.: The Control Handbook: Control System Advanced Methods (2010)
Hogan, N.: An Organizing Principle for a Class of Voluntary Movements. J. Neurosci. 4(11), 2745–2754 (1984)
Kuindersma, S.R., Hannigan, E., Ruiken, D., Grupen, R.A.: Dexterous Mobility with the uBot-5 Mobile Manipulator, Proc. 14th Int. Conf. Adv. Robot. (2009)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
da Silva, A.R., Sup, F.C. A Robotic Walker Based on a Two-Wheeled Inverted Pendulum. J Intell Robot Syst 86, 17–34 (2017). https://doi.org/10.1007/s10846-016-0447-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10846-016-0447-8