Skip to main content
Log in

Collaborative Localization for Multi-Robot System with Fault Detection and Exclusion Based on the Kullback-Leibler Divergence

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Multi-robot system attracted attention in various applications in order to replace the human operators. To achieve the intended goal, one of the main challenges of this system is to ensure the integrity of localization by adding a sensor fault diagnosis step to the localization task. In this paper, we present a framework able, in addition of localizing a group of robots, to detect and exclude the faulty sensors from the group with an optimized thresholding method. The estimator has the informational form of the Kalman Filter (KF) namely Information Filter (IF). A residual test based on the Kullback-Leibler divergence (KLD) between the predicted and the corrected distributions of the IF is developed. It is generated from two tests: the first acts on the means and the second deals with the covariance matrices. Thresholding using entropy based criterion and Receiver Operating Characteristics (ROC) curve are discussed. Finally, the validation of this framework is studied on real experimental data from a group of robots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Rekleitis, I.M., Dudek, G., Milios, E.E.: Multi-robot cooperative localization: a study of trade-offs between efficiency and accuracy. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, 2002. vol. 3, pp. 2690–2695 vol.3 (2002)

  2. Roumeliotis, S.I., Bekey, G.A.: Distributed multirobot localization. IEEE Trans. On Robot. Autom. 18(5), 781–795 (2002)

    Article  Google Scholar 

  3. Jiang, L.: Sensor fault detection and isolation using system dynamics identification techniques. The University of Michigan (2011)

  4. Carrasco, R.A., Núñez, F., Cipriano, A.: Fault detection and isolation in cooperative mobile robots using multilayer architecture and dynamic observers. Robotica 29(04), 555–562 (2011)

    Article  Google Scholar 

  5. Durrant-Whyte, H.: Introduction to decentralised data fusion, Aust. Cent. Field Robot. Univ. Syd. Syd Aust. (2004)

  6. Martins, A.M., Neto, A D., Melo, J.D.: Comparison between mahalanobis distance and kullback-leibler divergence in clustering analysis. WSEAS TransSyst. 3, 501–505 (2004)

    Google Scholar 

  7. Pérez-Cruz, F: Kullback-Leibler divergence estimation of continuous distributions. IEEE International Symposium on Information Theory, 2008. ISIT , 1666–1670 (2008)

  8. Bozorg, M., Nebot, E.M., Durrant-Whyte, H.F.: A decentralised navigation architecture. In: Proceedings, of the 1998 IEEE International Conference on Robotics and Automation, 1998. vol. 4, pp. 3413–3418 vol.4 (1998)

  9. Al Hage, J., Tmazirte, N.A., El badaoui el najjar, M., Pomorski, D.: Fault Detection and Exclusion method for a tightly coupled localization system. In: 17th international conference on advanced robotics ICAR 2015 (2015)

  10. Sivalingam, R., Boley, D., Morellas, V., Papanikolopoulos, N.: Tensor sparse coding for positive definite matrices. IEEE Trans. On Pattern Anal Mach. Intell. 36(3), 592–605 (2014)

    Article  Google Scholar 

  11. Dhillon, I.S., Tropp, J.A.: Matrix nearness problems with Bregman divergences. SIAM J. Matrix Anal. Appl. 29(4), 1120–1146 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dhillon, J.: Differential entropic clustering of multivariate gaussians. Adv. Neural Inf. Process. Syst. 19, 337 (2007)

    Google Scholar 

  13. Eguchi, S., Copas, J.: Interpreting Kullback–Leibler divergence with the Neyman–Pearson lemma. J. Multivar. Anal. 97(9), 2034–2040 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Wang, J.-G.: Test statistics in kalman filtering. Positioning 01(13), 81–90 (2008)

    Article  Google Scholar 

  15. Martineau, A, Macabiau, C, Nikiforov, I, Roturier, B : Performance of receiver autonomous integrity monitoring (RAIM) for vertically guided approaches. In: 2008 Conférence Européenne de la Navigation, ENC-GNSS (2008)

  16. Metz, C.E.: Basic principles of ROC analysis. Semin. Nucl. Med. 8(4), 283–298 (1978)

    Article  Google Scholar 

  17. Hajian-Tilaki, K.: Receiver operating characteristic (ROC) curve analysis for medical diagnostic test evaluation. Casp. J. Intern. Med. 4(2), 627 (2013)

    Google Scholar 

  18. Irwin, R.J., Irwin, T.C.: Appraising credit ratings: Does the cap fit better than the roc?. Int. J. Finance Econ. 18(4), 396–408 (2013)

    Article  Google Scholar 

  19. Kurazume, R., Nagata, S., Hirose, S: Cooperative positioning with multiple robots. Proceedings of the 1994 IEEE International Conference on Robotics and Automation, 1994 (1994). pp. 1250–1257 vol.2

  20. Grabowski, R., Navarro-Serment, L.E., Paredis, C.J., Khosla, P.K.: Heterogeneous teams of modular robots for mapping and exploration. Auton. Robots 8(3), 293–308 (2000)

    Article  Google Scholar 

  21. Foxy, D., Burgardz, W., Kruppayy, H., Thruny, S.: Collaborative Multi-Robot Localization. KI-99 adv. Artif. Intell. 23rd Annu. Ger. Coference Sic Artif. Intell. Bonn Ger., 255 (1999)

  22. Li, H, Nashashibi, F.: Cooperative multi-vehicle localization using split covariance intersection filter. In: 2012 IEEE Intelligent Vehicles Symposium (IV), pp 211–216 (2012)

  23. Howard, A., Matark, M.J., Sukhatme, G.: Localization for mobile robot teams using maximum likelihood estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, 2002. vol. 1, pp. 434–439 vol.1 (2002)

  24. Martinelli, A., Pont, F., Siegwart, R.: Multi-Robot Localization using relative observations. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, 2005. ICRA 2005, pp 2797–2802 (2005)

  25. Carrillo-Arce, L.C. , Nerurkar, E.D., Gordillo, J.L., Roumeliotis, S.I.: Decentralized multi-robot cooperative localization using covariance intersection. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). pp. 1412–1417 (2013)

  26. Panzieri, S., Setola, R.: Multirobot Localisation Using Interlaced Extended Kalman Filter. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp 2816–2821 (2006)

  27. Nerurkar, E.D., Roumeliotis, S.I., Martinelli, A.: Distributed maximum a posteriori estimation for multi-robot cooperative localization (2009)

  28. Sundvall, P., Jensfelt, P.: Fault detection for mobile robots using redundant positioning systems, vol. 2006, pp 3781–3786 (2006)

  29. Roumeliotis, S.I., Sukhatme, G., Bekey, G.A.: Sensor fault detection and identification in a mobile robot Proceedings of the 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems, 1998. vol. 3, pp. 1383–1388 (1998)

  30. Christensen, A.L., O’Grady, R., Dorigo, M.: From fireflies to Fault-Tolerant swarms of robots. IEEE Trans. Evol. Comput. 13(4), 754–766 (2009)

    Article  Google Scholar 

  31. Li, X., Parker, L.E.: Sensor Analysis for Fault Detection in Tightly-Coupled Multi-Robot Team Tasks. In: 2007 IEEE International Conference on Robotics and Automation. pp. 3269–3276 (2007)

  32. Li, X., Parker, L.E.: Distributed sensor analysis for fault detection in tightly-coupled multi-robot team tasks. In: IEEE International Conference on Robotics and Automation, 2009. ICRA ’09, pp 3103–3110 (2009)

  33. Tinós, R., Navarro-Serment, L.E., Paredis, C.J.: Fault tolerant localization for teams of distributed robots Proceedings of the 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2001. vol. 2, pp. 1061–1066 (2001)

  34. Zeng, J., Kruger, U., Geluk, J., Wang, X., Xie, L.: Detecting abnormal situations using the Kullback–Leibler divergence. Automatica 50(11), 2777–2786 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. Belov, D.I., Armstrong, R.D.: Distributions of the Kullback–Leibler divergence with applications. Br. J. Math. Stat. Psychol. 64(2), 291–309 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. Hardin, J., Rocke, D.M.: The distribution of robust distances. J. Comput. Graph. Stat. 14(4), 928–946 (2005)

    Article  MathSciNet  Google Scholar 

  37. Rencher, A.C.: Methods of Multivariate Analysis Wiley (2003)

  38. Morales, Y., Takeuchi, E., Tsubouchi, T.: Vehicle localization in outdoor woodland environments with sensor fault detection conference=IEEE International Conference on Robotics and Automation, 2008. ICRA 2008, pp 449–454 (2008)

  39. Qiang, Z., Xiaolin, Z., Xiaoming, C. : ‘Research on RAIM algorithm under the assumption of simultaneous multiple satellites failure eighth ACIS international conference on software engineering, artificial intelligence, networking, and Parallel/Distributed computing 2007, SNPD 2007. vol. 1, pp. 719–724 (2007)

  40. Hero, A.: Signal Detection and Classification (1997)

  41. Harmouche, J., Delpha, C., Diallo, D.: Incipient fault detection and diagnosis based on Kullback–Leibler divergence using principal component analysis: Part II. Signal Process. 109, 334–344 (2015)

    Article  Google Scholar 

  42. Irwin, R.J., Irwin, T.C.: A principled approach to setting optimal diagnostic thresholds: where ROC and indifference curves meet. Eur. J. Intern. Med. 22(3), 230–234 (2011)

    Article  Google Scholar 

  43. Kanungo, T, Haralick, R.M.: Receiver operating characteristic curves and optimal Bayesian operating points. In: Proceedings of the International Conference on Image Processing, 1995. vol. 3, pp. 256–259 vol.3 (1995)

  44. Hoballah, I.Y., Varshney, P.K.: An information theoretic approach to the distributed detection problem. IEEE Trans. Inf. Theory 35(5), 988–994 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  45. Pomorski, D.: Entropy-based optimisation for binary detection networks. In: Proceedings of the Third International Conference on Information Fusion, 2000. FUSION 2000. vol. 2, pp. THC4/3–THC410 vol.2 (2000)

  46. Bonnifait, P.: Localisation précise en position et attitude des robots mobiles d’extérieur à évolutions lentes (1997)

  47. Lexa, M.: Useful Facts about the Kullback-Leibler discrimination distance, Houst Tex. (2004)

  48. Al Hage, J., AitTmazirte, N., El najjar, M.E., Pomorski, D.: Fault tolerant fusion approach based on information theory applied on GNSS localization. In: 2015 18th International Conference on Information Fusion (Fusion), pp 696–702 (2015)

  49. McDonald, R.P.: Testing pattern hypotheses for covariance matrices. Psychometrika 39(2), 189–201 (1974)

    Article  MATH  Google Scholar 

  50. Glickman, M.E., van Dyk, D.A. : Basic Bayesian Methods. In: Topics in Biostatistics Springer, pp 319–338 (2007)

  51. A. figueiredo, M: Lecture notes on bayesian estimation and classification Inst. Telecomunicacoes-Inst. Super Tec. (2004)

  52. Gertler, J.: Analytical redundancy methods in fault detection and isolation. In: Preprints of IFAC/IMACS Symposium on Fault Detection Supervision and Safety for Technical Processes SAFEPROCESS’91, pp 9–21 (1991)

  53. Colak, E., Mutlu, F., Bal, C., Oner, S., Ozdamar, K., Gok, B., Cavusoglu, Y.: Comparison of semiparametric, parametric, and nonparametric ROC analysis for continuous diagnostic tests using a simulation study and acute coronary syndrome data. Comput. Math. Methods Med., vol., 2012 (2012)

  54. Cai, T., Moskowitz, C.S.: Semi-parametric estimation of the binormal ROC curve for a continuous diagnostic test. Biostatistics 5(4), 573–586 (2004)

    Article  MATH  Google Scholar 

  55. Hsieh, F., Turnbull, B.W., et al.: Nonparametric and semiparametric estimation of the receiver operating characteristic curve. Ann. Stat. 24(1), 25–40 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joelle Al Hage.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hage, J.A., El Najjar, M.E. & Pomorski, D. Collaborative Localization for Multi-Robot System with Fault Detection and Exclusion Based on the Kullback-Leibler Divergence. J Intell Robot Syst 87, 661–681 (2017). https://doi.org/10.1007/s10846-016-0451-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-016-0451-z

Keywords