Skip to main content

Advertisement

Log in

Design of an Optimal 4-bar Mechanism Based Gravity Balanced Leg Orthosis

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

In this paper we propose the design and control of a 4-bar mechanism based gravity balanced orthosis for providing gait training to persons with disability. Human leg joints have a varying instantaneous centre of rotation and hence 4-bar mechanisms have been used to actuate the orthosis joints. Human gait is first recorded using a vision system and the hip and knee joint trajectories extracted from the data. Optimal 4-bar mechanisms are then designed using a genetic algorithm that gives the smallest mechanism that can replicate the hip and knee joint trajectories accurately. The orthosis joints are gravity balanced so that the potential energy of the system in any orientations is constant, and the wearer does not feel the weight of the system. Experimental and simulation results prove that the exoskeleton can effectively model the changing centre of rotation of the hip and knee joints and follow the desired human trajectories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dollar, A.M., Herr, H.: Lower extremity exoskeletons and active orthoses: challenges and state-of-the-art. IEEE Trans. Robot. 24(1), 144–158 (2008)

    Article  Google Scholar 

  2. Vukobratavic, M., Hristic, D., Stojiljkovic, Z.: Development of active anthropomorphic exoskeletons. J. Med. Biol. Eng. 12(1), 66–80 (1974)

    Article  Google Scholar 

  3. Kazerooni, H., Steger, R.: The berkeley lower extremity exoskeleton. Trans. ASME 128, 14–25 (2006)

    Article  Google Scholar 

  4. Chu, A., Kazerooni, H., Zoss, A.: On the biomimetic design of the berkeley lower extremity exoskeleton (BLEEX). IEEE International Conference on Robotics and Automation, 4345–4352 (2005)

  5. Chu, A., Kazerooni, H., Zoss, A.: Biomechanical design of the berkeley lower extremity exoskeleton (BLEEX). IEEE/ASME Trans. Mechatron. 11(2), 128–138 (2006)

    Article  Google Scholar 

  6. Suzuki, K., Mito, G., Kawamoto, H., Hasegawa, Y., Sankai, Y.: Intention-based walking support for paraplegia patients with robot suit HAL. Adv. Robot. 21(12) (2007)

  7. Kawamoto, H., Kamibayashi, K., Nakata, Y., Yamawaki, K., Ariyasu, R., Sankai, Y., Sakane, M., Eguchi, K., Ochia, N.: Pilot study of locomotion improvement using hybrid assistive limb in chronic stroke patients. BMC Neurol. 13, p141 (2013)

    Article  Google Scholar 

  8. Farris, R.J., Quintero, H.A., Goldfarb, M.: Preliminary evaluation of a powered lower limb orthosis to aid walking in paraplegic individuals. IEEE Trans. Neural Syst. Rehabil. Eng. 19(6), 652–659 (2011)

    Article  Google Scholar 

  9. Agarwal, S.K., Fattah, A.: On the design of a passive orthosis to gravity balance human legs. Trans. ASME J. Mech. Des. 127(4), 802–808 (2005)

    Article  Google Scholar 

  10. Agarwal, S.K., Fattah, A.: Theory and design of an orthotic device for full or partial gravity-balancing of a human leg during motion. IEEE Int. Conf. Neural syst. Rehabil. Eng. 12(2), 157–165 (2004)

    Article  Google Scholar 

  11. Banala, S.K., Kim, S.H., Agarwal, S.K., Scholz, J.P.: Robot assisted gait training with active leg exoskeleton (ALEX). IEEE Trans. Neural Syst. Rehabil. Eng. 17(1), 2–8 (2009)

    Article  Google Scholar 

  12. Cestari, M., Merodio, D.S., Areval, J.C., Garcia, E.: An adjustable compliant joint for lower limb exoskeleton. IEEE Trans. Mechatron. 20(2), 889–898 (2015)

    Article  Google Scholar 

  13. Cullell, A., Moreno, J.C., Rocon, E., Forner, A., Pons, J.L.: Biologically based design of an actuator system for a knee ankle foot orthosis. Mech. Mach. Theory 44, 860–872 (2009)

    Article  MATH  Google Scholar 

  14. Hussain, S., Xie, S.Q., Jamwal, P.K., Parsons, J.: An intrinsically compliant robotic orthosis for treadmill training. Med. Eng. Physis 34, 1448–1453 (2012)

    Article  Google Scholar 

  15. Hussain, S., Xie, S.Q., Jamwal, P.K.: Control of a robotic orthosis for gait rehabilitation. Robot. Auton. Syst. 61, 911–919 (2013)

    Article  Google Scholar 

  16. Yeh, T.J., Wu, M.J., Lu, T.J., Wu, F.K., Huang, C.R.: Control of McKibben pneumatic muscles for a power assist, lower limb orthosis. Mechatronics 20, 686–697 (2010)

    Article  Google Scholar 

  17. Chen, J., Liao, W.H.: Design and control of a magnetorheological actuator for leg exoskeleton. IEEE International Conference on Robotics and Biomimetics, 1388–1393 (2007)

  18. Wu, S.K., Jordan, M., Shen, X.: A pneumatically-actuated lower-limb orthosis. IEEE International Conference on EMBS, 8126–8129 (2011)

  19. Nagarajan, U., Aguirre-Ollinger, G., Goswami, A.: Integral admittance shaping : A unified framework for active exoskeleton control. Robot. Auton. Syst. 75, 310–324 (2016)

    Article  Google Scholar 

  20. Karavas, N., Ajoudani, A., Tsagarakis, N., Saglia, J., Bicchi, A., Caidwell, D.: Tele-impedance based assistive control for a compliant knee exoskeleton. Robot. Auton. Syst. 73, 78–90 (2015)

    Article  Google Scholar 

  21. Oh, S., Baek, E., Song, S.K., Mohammed, S., Jeon, D, Kong, K.: A generalized control framework of assistive controllers and its applications to lower limb exoskeletons. Robot. Auton. Syst. 73, 68–77 (2015)

    Article  Google Scholar 

  22. Galle, S., Malcolm, P., Derave, W, De Clercq, D.: Uphill walking with a simple exoskeleton: Planterflexion assistance leads to proximal adaptations. Gait Posture 41, 246–251 (2015)

    Article  Google Scholar 

  23. Aach, M., Cruciger, O., Kaiser, M.S., Schwenkreis, P., Sankai, Y, Schildhauer, T.A.: Voluntary driven exoskeleton as a new tool for rehabilitation in chronic spinal cord injury: a pilot study. Spine J. 14, 2847–2853 (2014)

    Article  Google Scholar 

  24. Chen, B., Ma, H., Qin, L.Y., Gao, F., Chan, K.M., Law, S.W., Qin, L., Liao, W.H.: Recent developments and challenges of lower extremity exoskeletons. J. Orthop. Trans. 5, 26–37 (2016)

    Google Scholar 

  25. Norton, R.L.: Design of machinery: An introduction to the synthesis and analysis of mechanisms and machines, 3rd edn. McGraw-Hill Higher Education (2004)

  26. Cabrera, J.A., Simon, A., Prado, M.: Optimal synthesis of mechanisms with genetic algorithms. Mech. Mach. Theory 37, 1165–1177 (2002)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashish Dutta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choudhary, V.P., Singh, V.K. & Dutta, A. Design of an Optimal 4-bar Mechanism Based Gravity Balanced Leg Orthosis. J Intell Robot Syst 86, 485–494 (2017). https://doi.org/10.1007/s10846-017-0466-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-017-0466-0

Keywords

Navigation