Skip to main content
Log in

Stability Analysis and Control of Nonholonomic Systems with Potential Fields

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper presents a theoretical analysis on the stability of nonholonomic systems when a potential field method is applied to them, and shows a numerical example for a nonholonomic underwater vehicle among obstacles. Nonholonomic systems with a potential function have an infinite number of equilibrium points, because the motion of the systems cannot always be generated exactly along the gradient vector of the potential function. By utilizing the component of the input that does not increase or decrease the potential function, the equilibrium points other than the critical points of the function can be destabilized, if the controllability of the systems is satisfied with the first-order Lie brackets of input vector fields. A time-invariant controller is proposed based on the theoretical analysis on the stability of equilibrium points, and applied to an underwater vehicle among obstacles. When the potential function has saddles as its critical points, the potential function is modified to be time-varying near the saddles in order to prevent the system from being trapped in the saddles. Numerical simulation results demonstrate that the underwater vehicle with the proposed controller converges to the desired point without collision with obstacles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. Int. J. Robot. Res. 5(1), 90–98 (1986)

    Article  Google Scholar 

  2. Kim, J.-O., Khosla, P.K.: Real-time obstacle avoidance using harmonic potential functions. IEEE Trans. Robot. Autom. 8(5), 338–349 (1992)

    Article  Google Scholar 

  3. Guldner, J., Utkin, V.I.: Sliding mode control for gradient tracking and robot navigation using artificial potential fields. IEEE Trans. Robot. Autom. 11(2), 247–254 (1995)

    Article  Google Scholar 

  4. Ge, S.S., Cui, Y.J.: New potential functions for mobile robot path planning. IEEE Trans. Robot. Autom. 16(5), 615–620 (2000)

    Article  Google Scholar 

  5. Rimon, E., Koditschek, D.E.: Exact robot navigation using artificial potential functions. IEEE Trans. Robot. Autom. 8(5), 501–518 (1992)

    Article  Google Scholar 

  6. Rimon, E., Koditschek, D.E.: The construction of analytic diffeomorphisms for exact robot navigation on star worlds. Trans. Amer. Math. Soc. 327(1), 71–116 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  7. Koditschek, D.E., Rimon, E.: Robot navigation functions on manifolds with boundary. Adv. Appl. Math. 11(4), 412–442 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kolmanovsky, I., McClamroch, N.H.: Developments in nonholonomic control problems. IEEE Control Syst. 15(6), 20–36 (1995)

    Article  Google Scholar 

  9. Brockett, R.W.: Asymptotic stability and feedback stabilization. In: Brockett, R.W., Millman, R.S., Sussman, H.J. (eds.) Differential Geometric Control Theory, pp. 181–191, Birkhäuser (1983)

  10. Samson, C.: Control of chained systems application to path following and time-varying point-stabilization of mobile robots. IEEE Trans. Autom. Control 40(1), 64–77 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  11. M’Closkey, R.T., Murray, R.M.: Exponential stabilization of driftless nonlinear control systems using homogeneous feedback. IEEE Trans. Autom. Control 42(5), 614–628 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. Khennouf, H., Canudas de Wit, C.: Quasi-continuous exponential stabilizers for nonholonomic systems. In: Proceedings of IFAC 13th World Congress, 2b-174 (1996)

  13. Astolfi, A.: Exponential stabilization of a wheeled mobile robot via discontinuous control. ASME J. Dyn. Syst. Measur. Control 121(1), 121–125 (1999)

    Article  Google Scholar 

  14. Tayebi, A., Tadjine, M., Rachid, A.: Invariant manifold approach for the stabilization of nonholonomic chained systems: application to a mobile robot. Nonlinear Dyn. 24(2), 167–181 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Morin, P., Samson, C.: Practical stabilization of driftless systems on Lie groups: the transverse function approach. IEEE Trans. Autom. Control 48(9), 1496–1508 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Morin, P., Samson, C.: Control of nonholonomic mobile robots based on the transverse function approach. IEEE Trans. Robot. 25(5), 1058–1073 (2009)

    Article  Google Scholar 

  17. Tanner, H.G., Loizou, S., Kyriakopoulos, K.J.: Nonholonomic stabilization with collision avoidance for mobile robots. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1220–1225 (2001)

  18. Tanner, H.G., Loizou, S.G., Kyriakopoulos, K.J.: Nonholonomic navigation and control of cooperating mobile manipulators. IEEE Trans. Robot. Autom. 19(1), 53–64 (2003)

    Article  Google Scholar 

  19. Valbuena, L., Tanner, H.G.: Hybrid potential field based control of differential drive mobile robots. J. Intell. Robot. Syst. 68(3-4), 307–322 (2012)

    Article  MATH  Google Scholar 

  20. Karydis, K., Valbuena, L., Tanner, H.G.: Model predictive navigation for position and orientation control of nonholonomic vehicles. In: Proceedings of the 2012 IEEE International Conference on Robotics and Automation, pp. 3206–3211 (2012)

  21. LaValle, S.M., Kuffner, J.J.: Randomized kinodynamic planning. Int. J. Robot. Res. 20(5), 378–400 (2001)

    Article  Google Scholar 

  22. LaValle, S.M., Konkimalla, P.: Algorithms for computing numerical optimal feedback motion strategies. Int. J. Robot. Res. 20(9), 729–752 (2001)

    Article  Google Scholar 

  23. Que, Z., Wang, J., Plaisted, C.E.: A new analytical solution to mobile robot trajectory generation in the presence of moving obstacles. IEEE Trans. Robot. 20(6), 978–993 (2004)

    Article  Google Scholar 

  24. Papadopoulos, E., Poulakakis, I., Papadimitriou, I.: On path planning and obstacle avoidance for nonholonomic platforms with manipulators: a polynomial approach. Int. J. Robot. Res. 21(4), 367–383 (2002)

    Article  Google Scholar 

  25. Lamiraux, F., Bonnafous, D., Lefebvre, O.: Reactive path deformation for nonholonomic mobile robots. IEEE Trans. Robot. 20(6), 967–977 (2004)

    Article  Google Scholar 

  26. Divelbiss, A.W., Wen, J.T.: A path space approach to nonholonomic motion planning in the presence of obstacles. IEEE Trans. Robot. Autom. 13(3), 443–451 (1997)

    Article  Google Scholar 

  27. Weir, M.K., Bott, M.P.: High quality goal connection for nonholonomic obstacle navigation allowing for drift using dynamic potential fields. In: Proceedings of the 2010 IEEE International Conference on Robotics and Automation, pp. 3221–3226 (2010)

  28. Huang, W.H., Fajen, B.R., Fink, J.R., Warren, W.H.: Visual navigation and obstacle avoidance using a steering potential function. Robot. Auton. Syst. 54(4), 288–299 (2006)

    Article  Google Scholar 

  29. Ramírez, G., Zeghloul, S.: Collision-free path planning for nonholonomic mobile robots using a new obstacle representation in the velocity space. Robotica 19(5), 543–555 (2001)

    Article  Google Scholar 

  30. Patel, S., Jung, S.-H., Ostrowski, J.P., Rao, R., Taylor, C.J.: Sensor based door navigation for a nonholonomic vehicle. In: Proceedings of the 2002 IEEE International Conference on Robotics and Automation, pp. 3081–3086 (2002)

  31. Lamiraux, F., Sekhavat, S., Laumond, J.P.: Motion planning and control for Hilare pulling a trailer. IEEE Trans. Robot. Autom. 15(4), 640–652 (1999)

    Article  Google Scholar 

  32. Sekhavat, S., Laumond, J.-P.: Topological property for collision-free nonholonomic motion planning: the case of sinusoidal inputs for chained form systems. IEEE Trans. Robot. Autom. 14(5), 671–680 (1998)

    Article  Google Scholar 

  33. Laumond, J.-P., Jacobs, P.E., Taïx, M., Murray, R.M.: A motion planner for nonholonomic mobile robots. IEEE Trans. Robot. Autom. 10(5), 577–593 (1994)

    Article  Google Scholar 

  34. Jacobs, P., Canny, J.: Planning smooth paths for mobile robots. In: Li, Z., Canny, J. F. (eds.) Nonholonomic Motion Planning, pp. 271–342. Kluwer (1993)

  35. Yang, S.X., Meng, M.Q.-H.: Real-time collision-free motion planning of a mobile robot using a neural dynamics-based approach. IEEE Trans. Neural Netw. 14(6), 1541–1552 (2003)

    Article  Google Scholar 

  36. Kallen, V., Komoroski, A.T., Kumar, V.: Sequential composition for navigating a nonholonomic cart in the presence of obstacles. IEEE Trans. Robot. 27(6), 1152–1159 (2011)

    Article  Google Scholar 

  37. Xiang, X., Lapierre, L., Jouvencel, B.: Guidance based collision avoidance of coordinated nonholonomic autonomous vehicles. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 6064–6069 (2010)

  38. Neimark, J.I., Fufaev, N.A.: Dynamics of Nonholonomic Systems. the American Mathematical Society Publisher: the American Mathematical Society (1972)

  39. Zhu, H.P., Yu, A.B.: A contribution to the stability of nonholonomic systems. Mech. Res. Commun. 29(5), 307–314 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  40. Urakubo, T.: Feedback stabilization of a nonholonomic system with potential fields: application to a two-wheeled mobile robot among obstacles. Nonlinear Dyn. 81(3), 1475–1487 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  41. Urakubo, T.: Discontinuous feedback stabilization of a class of nonholonomic systems based on Lyapunov control. In: Proceedings of Fifth International Workshop on Robot Motion and Control, pp. 91–96 (2005)

  42. Nakamura, Y., Savant, S.: Nonholonomic motion control of an autonomous underwater vehicle. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1254–1259 (1991)

  43. Egeland, O., Berglund, E., Sørdalen, O.J.: Exponential stabilization of a nonholonomic underwater vehicle with constant desired configuration. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 20–25 (1994)

  44. Bullo, F., Leonard, N.E.: Motion control for underactuated mechanical systems on Lie groups. In: Proceedings of the 1997 European Control Conference, pp. 1830–1835 (1997)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takateru Urakubo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Urakubo, T. Stability Analysis and Control of Nonholonomic Systems with Potential Fields. J Intell Robot Syst 89, 121–137 (2018). https://doi.org/10.1007/s10846-017-0473-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-017-0473-1

Keywords

Navigation