Skip to main content
Log in

Active Fault-Tolerant Control for a Quadrotor with Sensor Faults

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

An active fault-tolerant control scheme for a quadrotor with velocity sensor faults is presented in this paper. A two-level control scheme is designed to guarantee the quadrotor to track the given trajectory in case of no faults. The control scheme consists of an external-loop Proportion Differentiation (PD) control law and an internal-loop Proportion Integration Differentiation (PID) control law. A fault diagnosis unit is designed to detect and estimate sensor faults. The fault detection is achieved by using a Luenberger observer based residual generator and the fault estimation problem is solved by utilizing a new proposed augment variable observer. A sufficient condition on the existence of the augment variable observer is given based on Linear Matrix Inequalities (LMIs). The uniformly ultimately bounded property of state and fault estimation errors is proved. By combining the external-loop PD control law and the result of fault estimation, a fault-tolerant control law is proposed. Finally, the effectiveness of the scheme is demonstrated by the simulation and experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Al Younes, Y., Noura, H., Rabhi, A., EL Hajjaji, A., Al Hussien, N.: Sensor fault detection and isolation in the quadrotor vehicle using nonlinear identity observer approach. In: 2013 Conference on Control and Fault-Tolerant Systems (SysTol), pp 486–491. IEEE (2013)

  2. Berbra, C., Lesecq, S., Martinez, J.: A multi-observer switching strategy for fault-tolerant control of a quadrotor helicopter. In: 2008 16th Mediterranean Conference on Control and Automation, pp 1094–1099. IEEE (2008)

  3. Bouadi, H., Aoudjif, A., Guenifi, M.: Adaptive flight control for quadrotor UAV in the presence of external disturbances. In: 2015 6th International Conference on Modeling, Simulation, and Applied Optimization (ICMSAO), pp 1–6. IEEE (2015)

  4. Bresciani, T.: Modelling, identification and control of a quadrotor helicopter. Department of Automatic Control Lund University (2008)

  5. Cen, Z., Noura, H., Susilo, T.B., Al Younes, Y.: Robust fault diagnosis for quadrotor UAVs using adaptive Thau observer. J. Intell. Robot. Syst. 73(1-4), 573–588 (2014)

    Article  Google Scholar 

  6. De Lellis, M., De Oliveira, C.: Modeling, identification and control of a quadrotor aircraft. Czech Technical University, Praga (2011)

    Google Scholar 

  7. Freddi, A., Longhi, S., Monteriu, A.: A model-based fault diagnosis system for a mini-quadrotor. In: Proceedings 2009 7th Workshop on Advanced Control and Diagnosis, pp 19–20 (2009)

  8. Gong, M., Li, X., Zhou, J.: Robust tracking control for robot based on backstepping method. J. Shandong Univ. Sci. Technol.(Nat. Sci.) 25(3), 32–35 (2006)

    Google Scholar 

  9. Li, J., Li, Y.: Dynamic analysis and PID control for a quadrotor. In: 2011 International Conference on Mechatronics and Automation (ICMA), pp 573–578. IEEE (2011)

  10. Lopez-Estrada, F.R., Ponsart, J.C., Theilliol, D., Astorga-Zaragoza, C., Zhang, Y.: Robust sensor fault diagnosis and tracking controller for a UAV modelled as LPV system. In: 2014 International Conference on Unmanned Aircraft Systems (ICUAS), pp 1311–1316. IEEE (2014)

  11. Madani, T., Benallegue, A.: Backstepping control for a quadrotor helicopter. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp 3255–3260. IEEE (2006)

  12. Nguyen, H., Berbra, C., Lesecq, S., Gentil, S., Barraud, A., Godin, C.: Diagnosis of an inertial measurement unit based on set membership estimation. In: 2009. MED’09. 17th Mediterranean Conference on Control and Automation, pp 211–216. IEEE (2009)

  13. Qin, L., He, X., Zhou, D.: Fault-tolerant cooperative output regulation for multi-vehicle systems with sensor faults. International Journal of Control (2016). doi:10.1080/00207179.2016.1242026

  14. Qin, L., He, X., Zhou, Y., Zhou, D.: Fault-tolerant control for a quadrotor unmanned helicopter subject to sensor faults. In: 2016 International Conference on Unmanned Aircraft Systems (ICUAS), pp 1280–1286. IEEE (2016)

  15. Rafaralahy, H., Richard, E., Boutayeb, M., Zasadzinski, M.: Simultaneous observer based sensor diagnosis and speed estimation of unmanned aerial vehicle. In: 2008. CDC 2008. 47th IEEE Conference on Decision and Control, pp 2938–2943. IEEE (2008)

  16. Ranjbaran, M., Khorasani, K.: Fault recovery of an under-actuated quadrotor aerial vehicle. In: 2010 49th IEEE Conference on Decision and Control (CDC), pp 4385–4392. IEEE (2010)

  17. Rich, M.: Model development, system identification, and control of a quadrotor helicopter. Ph.D. thesis. Iowa State University (2012)

  18. Saberi, A., Salmasi, F.R., Najafabadi, T.A.: Sensor fault-tolerant control of wind turbine systems. In: 20145th Conference on Thermal Power Plants (CTPP), pp 40–45. IEEE (2014)

  19. Sadeghzadeh, I., Zhang, Y.: A review on fault-tolerant control for unmanned aerial vehicles (UAVs). Infotech @ Aerospace, St. Louis, MO (2011)

    Book  Google Scholar 

  20. Santos, M., López, V., Morata, F.: Intelligent fuzzy controller of a quadrotor. In: 2010 International Conference on Intelligent Systems and Knowledge Engineering (ISKE), pp 141–146. IEEE (2010)

  21. Shames, I., Teixeira, A.M., Sandberg, H., Johansson, K.H.: Distributed fault detection for interconnected second-order systems. Automatica 47(12), 2757–2764 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Shi, J., He, X., Wang, Z., Zhou, D.: Distributed fault detection for a class of second-order multi-agent systems: an optimal robust observer approach. IET Control Theory Appl. 8(12), 1032–1044 (2014)

    Article  MathSciNet  Google Scholar 

  23. Tan, C.P., Edwards, C.: Sliding mode observers for robust detection and reconstruction of actuator and sensor faults. Int. J. Robust Nonlinear Control 13(5), 443–463 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wang, C., Sun, X.: Research and design of an adaptive global sliding mode variable structure controller. J. Shandong Univ. Sci. Technol.(Nat. Sci) 28(1), 64–69 (2009)

    MathSciNet  Google Scholar 

  25. Zhang, K., Jiang, B., Cocquempot, V., et al.: Adaptive observer-based fast fault estimation. Int. J. Control Autom. Syst. 6(3), 320 (2008)

    Google Scholar 

  26. Zhang, Y., Chamseddine, A.: Fault tolerant flight control techniques with application to a quadrotor UAV testbed INTECH Open Access Publisher (2012)

  27. Zhang, Y., Chamseddine, A., Rabbath, C., Gordon, B., Su, C.Y., Rakheja, S., Fulford, C., Apkarian, J., Gosselin, P.: Development of advanced FDD and FTC techniques with application to an unmanned quadrotor helicopter testbed. J. Franklin Inst. 350(9), 2396–2422 (2013)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donghua Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, L., He, X., Yan, R. et al. Active Fault-Tolerant Control for a Quadrotor with Sensor Faults. J Intell Robot Syst 88, 449–467 (2017). https://doi.org/10.1007/s10846-017-0474-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-017-0474-0

Keywords

Navigation