Skip to main content
Log in

Fault Tolerant Margins for Unmanned Aerial Vehicle Flight Safety

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Consider an unmanned aerial vehicle (UAV) operation from the time it is launched until the time it is put into an autonomous flight control mode. The control input u(t) during this time duration is modeled σ u(t) and assumed healthy with σ = 1. In practice, however, the control inputs are less effective with a σ-value in the interval [0, 1) (Fan et al. 2012; Jayakumar and Das 2006; Hu et al. J. Guid. Control. Dyn. 34(3), 927–932, 2011). Complete damaged condition is inferred from σ = 0. Given a stabilizing controller, a range of σ-values in the interval [0,1) for which the closed loop system would remain stable is referred as the fault-tolerant margin (FTM). Flight operations with control effectiveness beyond the FTM are catastrophic. Further, when aerodynamic parameter variations due to an uncertain atmospheric condition in an UAV are present, it is shown that the FTMs are extremely sensitive to these parameter perturbations. In this paper, the FTMs are presented. The effects of control effectiveness factor on the nonlinear UAV when it is in the stable range are investigated. An UAV model in Ashokkumar and York (2016) is considered to illustrate the FTMs as a threshold to guarantee the safe operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fan, J., Zhang, Y., Zheng, Z.: Hybrid Fault Tolerant Flight Control against Actuator Faults and Input Saturation: a Set Invariant Approach. In: The Proceedings of AIAA Guidance, Navigation, and Control Conference, Minneapolis, AIAA, 2012-4537 (2012)

  2. Jayakumar, M., Das, B.B.: Detection and Isolation of Incipient Sensor Faults in a Flight Control Actuator. In: 6th AIAA Aviation Technology, Integration and Operations Conference (ATIO), Wichita, AIAA, 2006-7791 (2006)

  3. Hu, Q., Xiao, B., Zhang, Y.: Fault tolerant attitude control for spacecraft under loss of actuator effectiveness. J. Guid. Control. Dyn. 34(3), 927–932 (2011)

    Article  Google Scholar 

  4. Oaks, Jr. O.J., Cook, G.: Piecewise linear control of nonlinear systems. IEEE Trans. Ind. Electron. Control. Instrum. IECI-23, 56–63 (1976)

    Article  Google Scholar 

  5. Stevens, B.L., Lewis, F.L.: Aircraft Control and Simulation. John Wiley & Sons, New York (1992). Chapters 1 and 2

    Google Scholar 

  6. Khalil, H.K.: Nonlinear Systems, Second Edition, p 127. Prentice Hall, New Jersey (1996). ch. 3.3

    Google Scholar 

  7. Chang, B.C., Kwatny, H.G., Thomas, S., Bajpai, G., Hu, D.C., Belcastro, C.: Reconfigurable control of aircraft in nonlinear flight regimes, AIAA Guidance, Navigation, and Control Conference, San Francisco, AIAA-2005-6167 (2005)

  8. Thomas, S., Bajpai, G., Kwatny, H.G., Chang, B.C.: Nonlinear dynamic stability and bifurcation in aircraft: Simulation and analysis tools, AIAA Guidance, Navigation, and Control Conference, San Francisco, AIAA-2005-6428 (2005)

  9. Feron, E.: A more reliable robust stability indicator for linear systems subject to parametric uncertainties. IEEE Trans. on Autom. Control 42, 1326–1330 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bianchini, G., Falugi, P., Tesi, A., Vicino, A.: A convex lower bound for the real l 2parametric stability margin of linear control systems with restricted complexity controllers. IEEE Trans. Autom. Control 52, 514–520 (2007)

    Article  MATH  Google Scholar 

  11. Rachinayani, P.: Robust Fault Tolerant Control for Aircraft Systems, M.S. Thesis, Department of Electrical Engineering, Louisiana State University, USA

  12. Shore, D., Bodson, M.: Flight testing of a reconfigurable system on an unmanned aircraft. In: 2004 American Control Conference, Boston, 3747–3752 USA (2004)

  13. Richter, J.H., Heemels, W.P.M.H., van de Wouw, N., Lunze, J.: Reconfigurable control of piecewise affine systems with actuator and sensor faults: stability and tracking. Automatica 47, 678–691 (2011)

  14. Tandale, M.D., Valasek, J.: Fault Tolerant structured adaptive model inversion control. J. Guid. Control. Dyn. 29, 635–642 (2006)

    Article  Google Scholar 

  15. Chowdhary, G., Johnson, E.N., Chandramohan, R., Kimbrell, M.S., Calise, A.J.: Guidance and control of airplanes under actuator failures and severe structural damage. AIAA J. Guid. Control Dyn. 36, 1093–1104 (2013)

    Article  Google Scholar 

  16. Choi, J.W., Lee, S.B., Lee, D.Y., Park, U.S., Suh, Y.S.: A fault isolation filter design using left eigenstructure assignment scheme. KSME Int. J. 14, 583–589 (2000)

    Article  Google Scholar 

  17. Zhang, Y., Jiang, J., Theilliol, D.: Incorporating performance degradation in fault tolerant control system design with multiple actuator failures. Int. J. Control Autom. Syst. 6, 327–338 (2008)

    Article  Google Scholar 

  18. Qi, R., Zhu, L., Jiang, B.: Fault Tolerant reconfigurable control for MIMO systems using online fuzzy identification. Int. J. Innov. Comput. Inf. Control 9, 3915–3928 (2013)

    Google Scholar 

  19. Zhang, Y., Rabbath, C.A., Su, C.Y.: Reconfigurable control allocation applied to an aircraft benchmark model, American Control Conference Seattle, 1052–1057 (2008)

  20. Cotting, M.C., Burken, J.J.: reconfigurable control design for the full X-33 Flight Envelope. NASA-TM-2001-210396 (2001)

  21. Wang, Q., Stengal, R.F.: Robust nonlinear flight control of a high performance aircraft. IEEE Trans. Control Syst. Technol. 13, 15–26 (2005)

    Article  Google Scholar 

  22. Sundarapandian, V.: New Results on the parametric stability of nonlinear systems. Math. Compu. Model. 43, 9–15 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ferrari, S., Stengal, R.F.: Online Adaptive critical flight control. J. Guid. Control. Dyn. 27, 777–786 (2004)

    Article  Google Scholar 

  24. Zhang, Y., Jiang, J.: Bibliographical review on reconfigurable fault-tolerant control systems. Annu. Rev. Control. 32, 229–252 (2008)

    Article  Google Scholar 

  25. Venkatasubramanian, V., Rengaswamy, R., Yen, K., Kavuri, S.N.: A Review of process fault detection and diagnosis Part I: Quantitative model-based methods. Comput. Chem. Eng. 27, 293–311 (2003)

    Article  Google Scholar 

  26. Marzat, J., Lahanier, H.P., Damongeot, F., Walter, E.: Model based fault diagnosis for aerospace systems: a survey. Proc. IMechE G J. Aerosp. Eng. 226, 510–531 (2012)

    Article  Google Scholar 

  27. Marzat, J., Lahanier, H.P., Damongeot, F., Walter, E.: Control based fault detection and isolation for autonomous aircraft. Proc. IMechE G J. Aerosp. Eng. 226, 1329–1360 (2012)

    Article  Google Scholar 

  28. Steinberg, M.: Historical overview of research in reconfigurable flight control. Proc. IMechE G J. Aerosp. Eng. 215, 263–275 (2005)

    Article  Google Scholar 

  29. Barmish, R.B., Fu, M., Saleh, S.: Stability of polytope of matrices: counterexamples. IEEE Trans. Autom. Control 33, 569–572 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  30. Barmish, B.R: New Tools for Robustness of Linear Systems, Macmillan Publishing Company (1994)

  31. Bhattacharyya, S.P., Chapllat, H., Keel, L.H.: Robust Control: The Parametric Approach. Prentice Hall Inc., New Jersey (1995)

    Google Scholar 

  32. Mueller, A. (ed.): Recent Advances in Robust Control –Theory and Applications in Robotics and Electromechanics, In Tech (2011)

  33. Feron, E.: A more reliable robust stability indicator for linear systems subject to parametric uncertainties. IEEE Trans. Autom. Control 42, 13261330 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  34. Fu, M., Dasgupta, S.: Robust stability under a class of nonlinear parametric perturbations. IEEE Trans. Autom. Control 40, 213–223 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  35. Fu, M., Polis, M.P.: Introduction to the parametric approach to robust stability. EEE Control. Syst. Mag. 33, 7–11 (1989)

    Article  Google Scholar 

  36. Bianchini, G., Falugi, P., Tesi, A., Vicino, A.: A convex lower bound for the real l2 parametric stability margin of linear control systems with restricted complexity controllers. IEEE Trans. Autom. Control 52, 514–520 (2007)

    Article  MATH  Google Scholar 

  37. Ashokkumar, C.R., York, G.: Aircraft Navigation with Uncertain Aerodynamics. In: The Proceedings of the AIAA Atmospheric Flight Mechanics Conference, San Diego, AIAA-2016-1291 (2016)

  38. Yedavalli, R.K.: Flight control applications of new stability robustness bounds for linear uncertain systems. J. Guid. Control. Dyn. 16, 1032–1037 (1993)

    Article  MATH  Google Scholar 

  39. Tesi, Vicino, A.: Robust stability of state space models with structured uncertainties. IEEE Trans. Autom. Control 35, 191–194 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  40. Marwaha, M., Valasek, J.: Fault tolerant control allocation for Mars entry vehicle using adaptive control. Int. J. Adapt. Control Signal Process. 25(2), 95–113 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chimpalthradi R. Ashokkumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashokkumar, C.R., York, G.W. & Gruber, S.F. Fault Tolerant Margins for Unmanned Aerial Vehicle Flight Safety. J Intell Robot Syst 88, 481–494 (2017). https://doi.org/10.1007/s10846-017-0487-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-017-0487-8

Keywords

Navigation