Skip to main content
Log in

Planning Stable and Efficient Paths for Reconfigurable Robots On Uneven Terrain

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

An analytical strategy to generate stable paths for reconfigurable mobile robots such as those equipped with manipulator arms and/or flippers, operating in an uneven environment whilst also meeting additional navigational objectives is hereby proposed. The suggested solution looks at minimising the length of the traversed path and the energy expenditure in changing postures, and also accounts for additional constraints in terms of sensor visibility and traction. This is particularly applicable to operations such as search and rescue where observing the environment for locating victims is the major objective, although this technique can be generalised to incorporate other potentially conflicting objectives (e.g. maximising ground clearance for a legged robot). The validity of the proposed approach is evaluated with two popular graph-based planners (A* and RRT) on a multi-tracked robot fitted with a manipulator arm and a range camera. Two challenging 3D terrain data sets have been employed: one obtained whilst operating the robot in a mock-up urban search and rescue (USAR) arena, and a second one, a reference on-line data set acquired on the quasi-outdoor rover testing facility at the University of Toronto Institute for Aerospace Studies (UTIAS).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adolf, F., Hirschmuller, H.: Meshing and simplification of high resolution urban surface data for uav path planning. J. Intell. Robot. Syst. 61(4), 169–180 (2011)

    Article  Google Scholar 

  2. Besseron, G., Grand, C., Amar, F.B., Bidaud, P.: Decoupled Control of the High Mobility Robot Hylos Based on a Dynamic Stability Margin In: Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems, pp 22–23. Nice, France (2008)

    Google Scholar 

  3. Chilian, A., Hirschmuller, H.: Stereo camera based navigation of mobile robots on rough terrain In: Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4571–4576, St. Louis, USA (2009)

    Google Scholar 

  4. Corporation, M.: Kinect sensor device (2010)

  5. Das, A., Diu, M., Mathew, N., Scharfenberger, C., Servos, J., Wong, A., Zelek, J., Clausi, D., Waslander, S.: Mapping, planning, and sample detection strategies for autonomous exploration. J. Field Rob. 31(1), 75–106 (2014)

    Article  Google Scholar 

  6. Dijkstra, E.: A note on two problems in connexion with graphs. Numer. Math. 1, 269–271 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  7. Freitas, G., Gleizer, G., Lizarralde, F., Hsu, L.: Kinematic reconfigurability control for an environmental mobile robot operating in the amazon rain forest. J. Field Rob. 27(2), 197–216 (2010)

    Google Scholar 

  8. Gingras, D., Dupuis, E., Payer, G., de Lafontaine, J.: Path Planning Based on Fluid Mechanics for Mobile Robots Using Unstructured Terrain Models In: Proc. IEEE International Conference on Robotics and Automation, pp 1978–1984. Anchorage, Alaska, USA (2010)

  9. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968)

    Article  Google Scholar 

  10. He, W., Chen, Y., Yin, Z.: Adaptive neural network control of an uncertain robot with full-state constraints. IEEE Trans. Cybern. 46(3), 620–629 (2016a)

  11. He, W., Dong, Y., Sun, C.: Adaptive neural impedance control of a robotic manipulator with input saturation. IEEE Trans. Syst. Man Cybern. Syst. Hum. 46(3), 334–344 (2016b)

  12. Iagnemma, K., Dubowsky, S.: Mobile Robot in Rough Terrain, Volume 12 Springer Tracts in Advanced Robotics, Berlin, Germany (2004)

  13. Iizuka, K., Sasaki, T., Yamano, M., Kubota, T.: Development of grousers with a tactile sensor for wheels of lunar exploration rovers to measure sinkage. Int. J. Adv. Robot. Syst. 11(49), 1–7 (2014)

    Google Scholar 

  14. iRobot Corporation: irobot 510 packbot (2015)

  15. Jaillet, L., Cortés, J., Siméon, T.: Sampling-based path planning on configuration-space costmaps. IEEE Trans. Robot. 26, 635–646 (2010)

    Article  Google Scholar 

  16. Kavraki, L.E., vestka, P., Latombe, J., Overmars, M.H.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Robot. Autom. 12, 556–580 (1996)

    Article  Google Scholar 

  17. Kessens, C., Smith, D., Osteen, P.: A Framework for Autonomous Self-Righting of a Generic Robot on Sloped Planar Surfaces In: Proc. IEEE International Conference on Robotics and Automation, pp 4724–4729. Minnesota, USA (2012)

    Google Scholar 

  18. Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. Int. J. Robot. Res. 5 (1), 90–98 (1986)

    Article  Google Scholar 

  19. Khoshelham, K., Elberink, S.O.: Accuracy and resolution of kinect depth data for indoor mapping applications. J. Sens. 12(1), 1437–1454 (2012)

    Article  Google Scholar 

  20. Kim, J., Kim, M., Park, J.: Improvement of humanoid walking control by compensating actuator elasticity Proc. IEEE International Conference on Humanoid Robots (Humanoids), pp. 29–34, Cancun, Mexico (2016)

    Google Scholar 

  21. LaValle, S.: Rapidly-Exploring Random Trees: A New Tool for Path Planning Technical Report. Iowa State University, Dept. of Computer Science (1998)

  22. LaValle, S., Kuffner, J.: Randomized kinodynamic planning. Int. J. Robot. Res. 20(5), 378–400 (2001)

    Article  Google Scholar 

  23. Liu, Y., Liu, G.: Interaction analysis and online tip-over avoidance for a reconfigurable tracked mobile modular manipulator negotiating slopes. IEEE/ASME Trans. Mechatron. 15(4), 623–635 (2010)

    Article  Google Scholar 

  24. Moosavian, A., Alipour, K.: On the dynamic tip-over stability of wheeled mobile manipulators. Int. J. Robot. Autom. 22(4), 322–328 (2007)

    Google Scholar 

  25. Morales, J., Martinez, J.L., Mandow, A., Seron, J., Garcia-Cerezo, A.J.: Static tip-over stability analysis for a robotic vehicle with a single-axle trailer on slopes based on altered supporting polygons. IEEE/ASME Trans. Mechatron. 18(2), 697–705 (2013)

    Article  Google Scholar 

  26. Norouzi, M., Miro, J.V., Dissanayake, G.: Planning high-visibility stable paths for reconfigurable robots on uneven terrain IEEE/RSJ Proc. International Conference on Intelligent Robots and Systems, pp. 2844–2849, Portugal (2012)

    Google Scholar 

  27. Norouzi, M., Miro, J.V., Dissanayake, G.: Planning Stable and Efficient Paths for Articulated Mobile Robots on Challenging Terrains Proc. Australasian Conference on Robotics and Automation, p 10. UNSW, Sydney, Australia (2013a)

  28. Norouzi, M., Miro, J.V., Dissanayake, G.: A Statistical Approach for Uncertain Stability Analysis of Mobile Robots In: Proc. IEEE International Conference on Robotics and Automation, pp 191–196. Karlsruhe, Germany (2013b)

  29. Okada, Y., Nagatani, K., Yoshida, K., Tadokoro, S., Yoshida, T., Koyanagi, E.: Shared autonomy system for tracked vehicles on rough terrain based on continuous three-dimensional terrain scanning. J. Field Rob. 28(6), 875–893 (2011)

    Article  Google Scholar 

  30. Papadopoulos, E., Rey, D.: The force angle measure of tipover stability margin for mobile manipulatiors. Veh. Syst. Dyn. 33(1), 29–48 (2000)

    Article  Google Scholar 

  31. Pathak, K., Birk, A., Vaskevicius, N., Pfingsthorn, M., Schwertfeger, S., Poppinga, J.: Online 3D SLAM by registration of large planar surface segments and closed form pose-graph relaxation. J. Field Rob. 27(1), 52–84 (2010)

    Article  Google Scholar 

  32. Pellenz, J., Gossow, D., Paulus, D.: Robbie: a fully autonomous robot for robocuprescue. Adv. Robot. 23, 1159–1177 (2009)

    Article  Google Scholar 

  33. Roan, P., Burmeister, A., Rahimi, A., Holz, K., Hooper, D.: Real-World Validation of Three Tipover Algorithms for Mobile Robots In: Proc. IEEE International Conference on Robotics and Automation, pp 4431–4436. Anchorage, Alaska, USA (2010)

    Google Scholar 

  34. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall (2003)

  35. Smith, R.: Open dynamics engine, (http://www.ode.org/) (2005)

  36. Sun, C., He, W., Ge, W., Chang, C.: Adaptive neural network control of biped robots. IEEE Transactions on Systems, Man, and Cybernetics Systems. doi:10.1109/TSMC.2016.2557223(2016)

  37. Tong, C.H., Gingras, D., Larose, K., Barfoot, T.D., Dupuis, E.: The canadian planetary emulation terrain 3D mapping dataset. Int. J. Robot. Res. 32(4), 389–395 (2013)

    Article  Google Scholar 

  38. Vukobratovic, M.: Zero-moment point-thirty five years of its life. Int. J. Humanoid Rob. 1(1), 157–173 (2004)

    Article  Google Scholar 

  39. Wirth, S., Pellenz, J.: Exploration Transform: a Stable Exploring Algorithm for Robots in Rescue Environments In: Proc. IEEE International Workshop on Safety, Security and Rescue Robotics (SSRR), pp 1–5. Rome, Italy (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Norouzi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Norouzi, M., Miro, J.V. & Dissanayake, G. Planning Stable and Efficient Paths for Reconfigurable Robots On Uneven Terrain. J Intell Robot Syst 87, 291–312 (2017). https://doi.org/10.1007/s10846-017-0495-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-017-0495-8

Keywords

Navigation