Skip to main content
Log in

Decentralized Control of Harmonic Drive Based Modular Robot Manipulator using only Position Measurements: Theory and Experimental Verification

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper presents a decentralized control approach of harmonic drive (HD) based modular robot manipulator (MRM) using only position measurements. Unlike known methods that rely on joint torque and velocity sensing, this paper addresses the problem of controlling HD based MRM using only position measurements on the motor and link sides of each module. The dynamic model of HD based MRM is formulated by employing a high-fidelity HD model and the velocity of each robot joint is estimated based on a novel nonlinear velocity estimator. With only local information on each module, a decentralized integral sliding mode controller (ISMC) is designed based on variable gain super-twisting algorithm (VGSTA) to compensate the model uncertainty and to reduce the chattering effect of the controller. The asymptotic stability of the closed-loop system is proved using the Lyapunov theory. Finally, experiments are performed for a 3-DOF MRM to verify the advantage of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Margulis, M., Volkov, D.: Calculation of the torsional rigidity of a harmonic power drive with a disc generator. Sov. Eng. Res. 7(6), 17–19 (1987)

    Google Scholar 

  2. Kircanski, N.M., Goldenberg, A.A.: An experimental study of nonlinear stiffness, hysteresis, and friction effects in robot joints with harmonic drives and torque sensors. Int. J. Robot. Res. 16(2), 214–239 (1997)

    Article  Google Scholar 

  3. Zhang, H., Ahmad, S., Liu, G.: Modeling of torsional compliance and hysteresis behaviors in harmonic drives. IEEE/ASME Trans. Mechatron. 20(1), 178–184 (2015)

    Article  Google Scholar 

  4. Zhang, H., Ahmad, S., Liu, G.: Torque estimation for robotic joint with harmonic drive transmission based on position measurements. IEEE Trans. Robot. 31(2), 322–330 (2015)

    Article  Google Scholar 

  5. Shi, Z., Liu, G.: Torque estimation of robot joint with harmonic drive transmission using a redundant adaptive robust extended Kalman filter, pp 6382–6387 (2014)

    Google Scholar 

  6. Kennedy, C.W., Desai, J.P.: Modeling and control of the Mitsubishi PA-10 robot arm harmonic drive system. IEEE/ASME Trans. Mechatron. 10(3), 263–274 (2005)

    Article  Google Scholar 

  7. Zhu, W.: Precision control of robots with harmonic drives, pp 3831–3836 (2007)

    Google Scholar 

  8. Li, Z., Melek, W.W., Clark, C.: Decentralized robust control of robot manipulators with harmonic drive transmission and application to modular and reconfigurable serial arms. Robotica 27(2), 291–302 (2009)

    Article  Google Scholar 

  9. Zhu, W., Lamarche, T., Dupuis, E., Jameux, D., Barnard, P., Liu, G.: Precision control of modular robot manipulators: the VDC approach with embedded FPGA. IEEE Trans. on Robot. 29(5), 1162–1179 (2013)

    Article  Google Scholar 

  10. Yanabe, S., Ishizuka, S., Yamaguchi, T., Ikeda, M.: Torsional stiffness of harmonic drive reducers. Trans. Jpn. Soc. Mech. Eng. Ser. C 55, 216–221 (1989)

    Article  Google Scholar 

  11. Sensinger, J.W., Weir, R.F.: Improved torque fidelity in harmonic drive sensors through the union of two existing strategies. IEEE/ASME Trans. Mechatron. 11(4), 457–461 (2006)

    Article  Google Scholar 

  12. Li, Z., Xia, Y., Sun, F.: Adaptive fuzzy control for multilateral cooperative teleoperation of multiple robotic manipulators under random network-induced delays. IEEE Trans. Fuzzy Syst. 22(2), 437–450 (2014)

    Article  Google Scholar 

  13. He, W., Dong, Y., Sun, C.: Adaptive neural impedance control of a robotic manipulator with input saturation. IEEE Trans. Syst. Man Cybern. Syst. 46(3), 334–344 (2016)

    Article  Google Scholar 

  14. He, W., David, A.O., Yin, Z., Sun, C.: Neural network control of a robotic manipulator with input deadzone and output constraint. IEEE Trans. Syst. Man Cybern. Syst. 46(6), 759–770 (2016)

    Article  Google Scholar 

  15. Sadeghzadeh, M., Calvert, D., Abdullah, H.A.: Self-learning visual servoing of robot manipulator using explanation-based fuzzy neural networks and Q-learning. J. Intell. Robot. Syst. 78(1), 83–104 (2015)

    Article  Google Scholar 

  16. Albu-Schaffer, A., Ott, C., Hirzinger, G.: A unified passivity-based control framework for position, torque and impedance control of flexible joint robots. Int J Robot Res 26(1), 23–39 (2007)

    Article  MATH  Google Scholar 

  17. Liu, G., Abdul, S., Goldenberg, A.A.: Distributed control of modular and reconfigurable robot with torque sensing. Robotica 26(1), 75–84 (2008)

    Article  Google Scholar 

  18. Liu, G., Liu, Y., Goldenberg, A.A.: Design, analysis, and control of a spring-assisted modular and reconfigurable robot. IEEE/ASME Trans. Mechatron. 16(4), 695–706 (2011)

    Article  Google Scholar 

  19. De Wit, C.C., Fixot, N., Astrom, K.: Trajectory tracking in robot manipulators via nonlinear estimated state feedback. IEEE Trans. Robot. Autom. 8(1), 138–144 (1992)

    Article  Google Scholar 

  20. Berghuis, H., Nijmeijer, H.: Robust control of robots via linear estimated state feedback. IEEE Trans. Automat. Contr. 39(10), 2159–2162 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  21. Zergeroglu, E., Dawson, D., de Queiroz, M., Krstic, M.: On global output feedback tracking control of robot manipulators, pp 5073–5078 (2000)

  22. Atassi, A.N., Khalil, H.K.: A separation principle for the stabilization of a class of nonlinear systems. IEEE Trans. Automat. Contr. 44(9), 1672–1687 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Liu, S., Chen, J., Zhang, B.: Second order sliding mode control of pan-tilt joint in modular manipulator, pp 2188–2193 (2012)

    Google Scholar 

  24. Liu, Y., Li, Y.: Sliding mode adaptive neural-network control for nonholonomic mobile modular manipulators. J. Intell. Robot. Syst. 44(3), 203–224 (2005)

    Article  Google Scholar 

  25. Li, Z., Deng, S., Su, C., Li, G., Yu, Z., Liu, Y., Wang, M.: Decentralised adaptive control of cooperating Robotic manipulators with disturbance observers. IET Control Theory Appl. 8(7), 515–521 (2014)

    Article  MathSciNet  Google Scholar 

  26. Li, Z., Yang, C., Su, C., Deng, S., Sun, F., Zhang, W.: Decentralized fuzzy control of multiple cooperating robotic manipulators with impedance interaction. IEEE Trans. Fuzzy Syst. 23(4), 1044–1056 (2015)

    Article  Google Scholar 

  27. Llama, M., Flores, A., Santibannez, V., Campa, R.: Global convergence of a decentralized adaptive fuzzy control for the motion of robot manipulators: application to the Mitsubishi PA10-7CE as a case of study. J. Intell. Robot. Syst. 82(3-4), 363–377 (2016)

    Article  Google Scholar 

  28. Dong, B., Li, Y.: Decentralized Reinforcement Learning Robust Optimal Tracking Control for Time Varying Constrained Reconfigurable Modular Robot Based on ACI and-Function. Math. Probl. Eng. 2013 (2013), 1–16 (2013)

    MathSciNet  MATH  Google Scholar 

  29. Zhu, M., Li, Y.: Decentralized adaptive fuzzy sliding mode control for reconfigurable modular manipulators. Int. J. Robust. Nonlin. 20(4), 472–488 (2010)

    MathSciNet  MATH  Google Scholar 

  30. Poznyak, A., Fridman, L., Bejarano, F.J.: Mini-max integral sliding-mode control for multimodel linear uncertain systems. IEEE Trans. Automat. Contr. 49(1), 97–102 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ramirez-Rodriguez, H., Parra-Vega, V., Sanchez-Orta, A., Garcia-Salazar, O.: Robust backstepping control based on integral sliding modes for tracking of quadrotors. J. Intell. Robot. Syst. 73 (1-4), 51–66 (2014)

    Article  Google Scholar 

  32. Dong, B., Li, Y.: Decentralized integral nested sliding mode control for time varying constrained Mmodular and reconfigurable robot. Adv. Mech. Eng. 7(1), 1–15 (2015)

    Article  Google Scholar 

  33. Gonzalez, T., Moreno, J.A., Fridman, L.: Variable gain super-twisting sliding mode control. IEEE Trans. Automat. Contr. 57(8), 2100–2105 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  34. Li, Y., Dong, B.: Decentralized ADRC control for reconfigurable manipulators nased on-VGSTA-ESO of sliding mode. Information-an International Interdisciplinary Journal 15(6), 2453–2465 (2012)

    Google Scholar 

  35. Technologies, H.D.: CSD And SHD ultra-flat component sets and gearheads. Harmonic Drive Technologies, Peabody, MA, USA (2012)

    Google Scholar 

  36. Curt, P., Thomas, R.J., Deming, S.: A high-fidelity harmonic drive model. ASME J. Dyn. Syst., Meas. Contr. 134(1), 457C461 (2012)

    Google Scholar 

  37. Imura, J., Yokokohji, Y., Yoshikawa, T., Sugie, T.: Robust control of robot manipulators based on joint torque sensor information. Int. J. Robot. Res. 13(5), 434–442 (1994)

    Article  Google Scholar 

  38. Liu, G., Goldenberg, A.A., Zhang, Y.: Precise slow motion control of a direct-drive robot arm with velocity estimation and friction compensation. Mechatronics 14(7), 821–834 (2004)

    Article  Google Scholar 

  39. Liu, G.: Decomposition-based friction compensation of mechanical systems. Mechatronics 12(5), 755–769 (2002)

    Article  Google Scholar 

  40. Liu, G., Goldenberg, A.A.: Uncertainty decomposition-based robust control of robot manipulators. IEEE Trans. Control Syst. Technol. 4(4), 384–393 (1996)

    Article  Google Scholar 

  41. Lu, K., Xia, Y.: Finite-time attitude control for rigid spacecraft-based on adaptive super-twisting algorithm. IET Control Theory Appl. 8(15), 1465–1477 (2014)

    Article  Google Scholar 

  42. Su, Y., Zheng, C., Sun, D., Duan, B.: A simple nonlinear velocity estimator for high-performance motion control. IEEE Trans. Ind. Electron. 52(4), 1161–1169 (2005)

    Article  Google Scholar 

  43. Han, J.: From PID to active disturbance rejection control. IEEE Trans. Ind. Electron. 56(3), 900–906 (2009)

    Article  Google Scholar 

  44. Khalil, H.K., Grizzle, J.: Nonlinear systems. Prentice Hall, New Jersey (1996)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant no. 61374051), the State Key Laboratory of Management and Control for Complex Systems (Grant no. 20150102) and the Scientific Technological Development Plan Project in Jilin Province of China (Grant nos. 20160414033GH, 201605-20013JH and 20150520112JH). The first author is also funded by China Scholarship Council. The authors would like to thank Guangjun Liu of the Ryerson University, Canada, for helping with the setup of the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanchun Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, B., Liu, K. & Li, Y. Decentralized Control of Harmonic Drive Based Modular Robot Manipulator using only Position Measurements: Theory and Experimental Verification. J Intell Robot Syst 88, 3–18 (2017). https://doi.org/10.1007/s10846-017-0521-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-017-0521-x

Keywords

Navigation