Abstract
This paper presents a decentralized control approach of harmonic drive (HD) based modular robot manipulator (MRM) using only position measurements. Unlike known methods that rely on joint torque and velocity sensing, this paper addresses the problem of controlling HD based MRM using only position measurements on the motor and link sides of each module. The dynamic model of HD based MRM is formulated by employing a high-fidelity HD model and the velocity of each robot joint is estimated based on a novel nonlinear velocity estimator. With only local information on each module, a decentralized integral sliding mode controller (ISMC) is designed based on variable gain super-twisting algorithm (VGSTA) to compensate the model uncertainty and to reduce the chattering effect of the controller. The asymptotic stability of the closed-loop system is proved using the Lyapunov theory. Finally, experiments are performed for a 3-DOF MRM to verify the advantage of the proposed method.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Margulis, M., Volkov, D.: Calculation of the torsional rigidity of a harmonic power drive with a disc generator. Sov. Eng. Res. 7(6), 17–19 (1987)
Kircanski, N.M., Goldenberg, A.A.: An experimental study of nonlinear stiffness, hysteresis, and friction effects in robot joints with harmonic drives and torque sensors. Int. J. Robot. Res. 16(2), 214–239 (1997)
Zhang, H., Ahmad, S., Liu, G.: Modeling of torsional compliance and hysteresis behaviors in harmonic drives. IEEE/ASME Trans. Mechatron. 20(1), 178–184 (2015)
Zhang, H., Ahmad, S., Liu, G.: Torque estimation for robotic joint with harmonic drive transmission based on position measurements. IEEE Trans. Robot. 31(2), 322–330 (2015)
Shi, Z., Liu, G.: Torque estimation of robot joint with harmonic drive transmission using a redundant adaptive robust extended Kalman filter, pp 6382–6387 (2014)
Kennedy, C.W., Desai, J.P.: Modeling and control of the Mitsubishi PA-10 robot arm harmonic drive system. IEEE/ASME Trans. Mechatron. 10(3), 263–274 (2005)
Zhu, W.: Precision control of robots with harmonic drives, pp 3831–3836 (2007)
Li, Z., Melek, W.W., Clark, C.: Decentralized robust control of robot manipulators with harmonic drive transmission and application to modular and reconfigurable serial arms. Robotica 27(2), 291–302 (2009)
Zhu, W., Lamarche, T., Dupuis, E., Jameux, D., Barnard, P., Liu, G.: Precision control of modular robot manipulators: the VDC approach with embedded FPGA. IEEE Trans. on Robot. 29(5), 1162–1179 (2013)
Yanabe, S., Ishizuka, S., Yamaguchi, T., Ikeda, M.: Torsional stiffness of harmonic drive reducers. Trans. Jpn. Soc. Mech. Eng. Ser. C 55, 216–221 (1989)
Sensinger, J.W., Weir, R.F.: Improved torque fidelity in harmonic drive sensors through the union of two existing strategies. IEEE/ASME Trans. Mechatron. 11(4), 457–461 (2006)
Li, Z., Xia, Y., Sun, F.: Adaptive fuzzy control for multilateral cooperative teleoperation of multiple robotic manipulators under random network-induced delays. IEEE Trans. Fuzzy Syst. 22(2), 437–450 (2014)
He, W., Dong, Y., Sun, C.: Adaptive neural impedance control of a robotic manipulator with input saturation. IEEE Trans. Syst. Man Cybern. Syst. 46(3), 334–344 (2016)
He, W., David, A.O., Yin, Z., Sun, C.: Neural network control of a robotic manipulator with input deadzone and output constraint. IEEE Trans. Syst. Man Cybern. Syst. 46(6), 759–770 (2016)
Sadeghzadeh, M., Calvert, D., Abdullah, H.A.: Self-learning visual servoing of robot manipulator using explanation-based fuzzy neural networks and Q-learning. J. Intell. Robot. Syst. 78(1), 83–104 (2015)
Albu-Schaffer, A., Ott, C., Hirzinger, G.: A unified passivity-based control framework for position, torque and impedance control of flexible joint robots. Int J Robot Res 26(1), 23–39 (2007)
Liu, G., Abdul, S., Goldenberg, A.A.: Distributed control of modular and reconfigurable robot with torque sensing. Robotica 26(1), 75–84 (2008)
Liu, G., Liu, Y., Goldenberg, A.A.: Design, analysis, and control of a spring-assisted modular and reconfigurable robot. IEEE/ASME Trans. Mechatron. 16(4), 695–706 (2011)
De Wit, C.C., Fixot, N., Astrom, K.: Trajectory tracking in robot manipulators via nonlinear estimated state feedback. IEEE Trans. Robot. Autom. 8(1), 138–144 (1992)
Berghuis, H., Nijmeijer, H.: Robust control of robots via linear estimated state feedback. IEEE Trans. Automat. Contr. 39(10), 2159–2162 (1994)
Zergeroglu, E., Dawson, D., de Queiroz, M., Krstic, M.: On global output feedback tracking control of robot manipulators, pp 5073–5078 (2000)
Atassi, A.N., Khalil, H.K.: A separation principle for the stabilization of a class of nonlinear systems. IEEE Trans. Automat. Contr. 44(9), 1672–1687 (1999)
Liu, S., Chen, J., Zhang, B.: Second order sliding mode control of pan-tilt joint in modular manipulator, pp 2188–2193 (2012)
Liu, Y., Li, Y.: Sliding mode adaptive neural-network control for nonholonomic mobile modular manipulators. J. Intell. Robot. Syst. 44(3), 203–224 (2005)
Li, Z., Deng, S., Su, C., Li, G., Yu, Z., Liu, Y., Wang, M.: Decentralised adaptive control of cooperating Robotic manipulators with disturbance observers. IET Control Theory Appl. 8(7), 515–521 (2014)
Li, Z., Yang, C., Su, C., Deng, S., Sun, F., Zhang, W.: Decentralized fuzzy control of multiple cooperating robotic manipulators with impedance interaction. IEEE Trans. Fuzzy Syst. 23(4), 1044–1056 (2015)
Llama, M., Flores, A., Santibannez, V., Campa, R.: Global convergence of a decentralized adaptive fuzzy control for the motion of robot manipulators: application to the Mitsubishi PA10-7CE as a case of study. J. Intell. Robot. Syst. 82(3-4), 363–377 (2016)
Dong, B., Li, Y.: Decentralized Reinforcement Learning Robust Optimal Tracking Control for Time Varying Constrained Reconfigurable Modular Robot Based on ACI and-Function. Math. Probl. Eng. 2013 (2013), 1–16 (2013)
Zhu, M., Li, Y.: Decentralized adaptive fuzzy sliding mode control for reconfigurable modular manipulators. Int. J. Robust. Nonlin. 20(4), 472–488 (2010)
Poznyak, A., Fridman, L., Bejarano, F.J.: Mini-max integral sliding-mode control for multimodel linear uncertain systems. IEEE Trans. Automat. Contr. 49(1), 97–102 (2004)
Ramirez-Rodriguez, H., Parra-Vega, V., Sanchez-Orta, A., Garcia-Salazar, O.: Robust backstepping control based on integral sliding modes for tracking of quadrotors. J. Intell. Robot. Syst. 73 (1-4), 51–66 (2014)
Dong, B., Li, Y.: Decentralized integral nested sliding mode control for time varying constrained Mmodular and reconfigurable robot. Adv. Mech. Eng. 7(1), 1–15 (2015)
Gonzalez, T., Moreno, J.A., Fridman, L.: Variable gain super-twisting sliding mode control. IEEE Trans. Automat. Contr. 57(8), 2100–2105 (2012)
Li, Y., Dong, B.: Decentralized ADRC control for reconfigurable manipulators nased on-VGSTA-ESO of sliding mode. Information-an International Interdisciplinary Journal 15(6), 2453–2465 (2012)
Technologies, H.D.: CSD And SHD ultra-flat component sets and gearheads. Harmonic Drive Technologies, Peabody, MA, USA (2012)
Curt, P., Thomas, R.J., Deming, S.: A high-fidelity harmonic drive model. ASME J. Dyn. Syst., Meas. Contr. 134(1), 457C461 (2012)
Imura, J., Yokokohji, Y., Yoshikawa, T., Sugie, T.: Robust control of robot manipulators based on joint torque sensor information. Int. J. Robot. Res. 13(5), 434–442 (1994)
Liu, G., Goldenberg, A.A., Zhang, Y.: Precise slow motion control of a direct-drive robot arm with velocity estimation and friction compensation. Mechatronics 14(7), 821–834 (2004)
Liu, G.: Decomposition-based friction compensation of mechanical systems. Mechatronics 12(5), 755–769 (2002)
Liu, G., Goldenberg, A.A.: Uncertainty decomposition-based robust control of robot manipulators. IEEE Trans. Control Syst. Technol. 4(4), 384–393 (1996)
Lu, K., Xia, Y.: Finite-time attitude control for rigid spacecraft-based on adaptive super-twisting algorithm. IET Control Theory Appl. 8(15), 1465–1477 (2014)
Su, Y., Zheng, C., Sun, D., Duan, B.: A simple nonlinear velocity estimator for high-performance motion control. IEEE Trans. Ind. Electron. 52(4), 1161–1169 (2005)
Han, J.: From PID to active disturbance rejection control. IEEE Trans. Ind. Electron. 56(3), 900–906 (2009)
Khalil, H.K., Grizzle, J.: Nonlinear systems. Prentice Hall, New Jersey (1996)
Acknowledgements
This work is supported by the National Natural Science Foundation of China (Grant no. 61374051), the State Key Laboratory of Management and Control for Complex Systems (Grant no. 20150102) and the Scientific Technological Development Plan Project in Jilin Province of China (Grant nos. 20160414033GH, 201605-20013JH and 20150520112JH). The first author is also funded by China Scholarship Council. The authors would like to thank Guangjun Liu of the Ryerson University, Canada, for helping with the setup of the experiments.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Dong, B., Liu, K. & Li, Y. Decentralized Control of Harmonic Drive Based Modular Robot Manipulator using only Position Measurements: Theory and Experimental Verification. J Intell Robot Syst 88, 3–18 (2017). https://doi.org/10.1007/s10846-017-0521-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10846-017-0521-x