Skip to main content
Log in

Active Fault-Tolerant Control of Unmanned Quadrotor Helicopter Using Linear Parameter Varying Technique

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

By adopting the linear parameter varying (LPV) control technique, this paper presents an active fault-tolerant control (FTC) strategy with application to unmanned quadrotor helicopter (UQH). Adverse effects from payload grasping and dropping caused variations of system dynamics as well as battery drainage induced loss of actuator effectiveness are expected to be counteracted in this study. First, the UQH is manipulated by a well designed baseline controller. In the presence of either payload grasping/dropping or battery drainage, their magnitudes are then obtained from a LPV-based fault detection and diagnosis (FDD) scheme. Next, based on the estimated values, a fault-tolerant tracking controller, which is linear parameter dependent, is devised in a convex polytopic LPV representation schedules to a new status in corresponding to the system variations, so that the negative impacts can be compensated. The parameters that change with system variations are specified as scheduling scalars for the LPV controller, while the ultimate control rule is obtainable by employing a set of well-established linear matrix inequality (LMI) conditions. Finally, both numerical simulations on a nonlinear model of UQH and experiments on a real UQH are conducted so as to testify the effectiveness of proposed methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, Z.X., Yuan, C., Zhang, Y.M., Luo, J.: A learning-based fault tolerant tracking control of an unmanned quadrotor helicopter. J. Intell. Robot. Syst. 84(1), 145–162 (2016)

    Article  Google Scholar 

  2. Alexis, K., Nikolakopoulos, G., Tzes, A.: Switching model predictive attitude control for a quadrotor helicopter subject to atmospheric disturbances. Control. Eng. Pract. 19(10), 1195–1207 (2011)

    Article  Google Scholar 

  3. Zhang, Y.M., Chamseddine, A., Rabbath, C.A., Gordon, B.W., Su, C.Y., Rakheja, S., Fulford, C., Apkarian, J., Gosselin, P.: Development of advanced FDD and FTC techniques with application to an unmanned quadrotor helicopter testbed. J. Frankl. Inst. 350(9), 2396–2422 (2013)

    Article  MATH  Google Scholar 

  4. Castillo, P., Dzul, A., Lozano, R.: Real-time stabilization and tracking of a four-rotor mini rotorcraft. IEEE Trans. Control Syst. Technol. 12(4), 510–516 (2004)

    Article  Google Scholar 

  5. Dierks, T., Jagannathan, S.: Output feedback control of a quadrotor UAV using neural networks. IEEE Trans. Neural Netw. 21(1), 50–66 (2010)

    Article  Google Scholar 

  6. Shakernia, O., Ma, Y., Koo, T.J., Sastry, S.: Landing an unmanned air vehicle: Vision based motion estimation and nonlinear control. Asian J. Control 1(3), 128–145 (1999)

    Article  Google Scholar 

  7. Gomez-Balderas, J.E., Flores, G., Carrillo, L.G., Lozano, R.: Tracking a ground moving target with a quadrotor using switching control. J. Intell. Robot. Syst. 70(1-4), 65–78 (2013)

    Article  Google Scholar 

  8. Yuan, C., Zhang, Y.M., Liu, Z.X.: A survey on technologies for automatic forest fire monitoring, detection and fighting using UAVs and remote sensing techniques. Can. J. Forest Res. 45(7), 783–792 (2015)

    Article  Google Scholar 

  9. Guerrero, J.A., Garcia, P.C., Challal, Y.: Quadrotors formation control. J. Intell. Robot. Syst. 70(1-4), 221–231 (2013)

    Article  Google Scholar 

  10. Rinaldi, F., Chiesa, S., Quagliotti, F.: Linear quadratic control for quadrotors UAVs dynamics and formation flight. J. Intell. Robot. Syst. 70(1-4), 203–220 (2013)

    Article  Google Scholar 

  11. Saska, M., Krajník, T., Vonásek, V., Kasl, Z., Spurný, V., Přeuc̆il, L.: Fault-tolerant formation driving mechanism designed for heterogeneous MAVs-UGVs groups. J. Intell. Robot. Syst. 73 (1-4), 603–622 (2014)

    Article  Google Scholar 

  12. Mellinger, D., Michael, N., Kumar, V.: Trajectory generation and control for precise aggressive maneuvers with quadrotors. Int. J. Robot. Res. 0(0), 1–11 (2012)

    Google Scholar 

  13. Escareño, J., Salazar, S., Romero, H., Lozano, R.: Trajectory control of a quadrotor subject to 2D wind disturbances. J. Intell. Robot. Syst. 70(1-4), 51–63 (2013)

    Article  Google Scholar 

  14. Mammarella, M., Campa, G., Napolitano, M.R., Fravolini, M.L., Gu, Y., Perhinschi, M.G.: Machine vision/GPS integration using EKF for the UAV aerial refueling problem. IEEE Trans. Syst. Man and Cybern. Part C (Appl. and Rev.) 38(6), 791–801 (2008)

    Article  Google Scholar 

  15. Bernard, M., Kondak, K., Maza, I., Ollero, A.: Autonomous transportation and deployment with aerial robots for search and rescue missions. J. Field Robot. 28(6), 914–931 (2011)

    Article  Google Scholar 

  16. Murphy, D.W., Cycon, J.: Applications for Mini VTOL UAV for Law Enforcement Enabling Technologies for Law Enforcement and Security, International Society for Optics and Photonics, pp 35–43 (1999)

    Google Scholar 

  17. Metni, N., Hamel, T.: A UAV for bridge inspection: Visual servoing control law with orientation limits. Autom. Constr. 17(1), 3–10 (2007)

    Article  Google Scholar 

  18. Pounds, P.E., Bersak, D.R., Dollar, A.M.: Stability of small-scale UAV helicopters and quadrotors with added payload mass under PID control. Auton. Robot. 33(1-2), 129–142 (2012)

    Article  Google Scholar 

  19. Annamalai, A.S.K., Sutton, R., Yang, C., Culverhouse, P., Sharma, S.: Robust adaptive control of an uninhabited surface vehicle. J. Intell. Robot. Syst. 78(2), 319–338 (2015)

    Article  Google Scholar 

  20. Sadeghzadeh, I., Abdolhosseini, M., Zhang, Y.M.: Payload drop application using an unmanned quadrotor helicopter based on gain-scheduled PID and model predictive control. Unmanned Syst. 2(1), 39–52 (2014)

    Article  Google Scholar 

  21. Wang, C., Nahon, M., Trentini, M.: Controller Development and Validation for a Small Quadrotor with Compensation for Model Variation. In: Proceedings of the International Conference on Unmanned Aircraft Systems (ICUAS), pp. 902–909 (2014)

  22. Michael, N., Fink, J., Kumar, V.: Cooperative manipulation and transportation with aerial robots. Auton. Robot. 30(1), 73–86 (2011)

    Article  MATH  Google Scholar 

  23. Maza, I., Kondak, K., Bernard, M., Ollero, A.: Multi-UAV cooperation and control for load transportation and deployment. J. Intell. Robot. Syst. 57(1-4), 417–449 (2010)

    Article  MATH  Google Scholar 

  24. Zhang, Y.M., Jiang, J.: Bibliographical review on reconfigurable fault-tolerant control systems. Annu. Rev. Control. 32(2), 229–252 (2008)

    Article  Google Scholar 

  25. Efe, M.Ö.: Neural network assisted computationally simple PI λ d μ control of a quadrotor UAV. IEEE Trans. Ind. Inform. 7(2), 354–361 (2011)

    Article  Google Scholar 

  26. Efe, M.Ö.: Battery power loss compensated fractional order sliding mode control of a quadrotor UAV. Asian J. Control. 14(2), 413–425 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lai, L.C., Yang, C.C., Wu, C.J.: Time-optimal control of a hovering quad-rotor helicopter. J. Intell. Robot. Syst. 45(2), 115–135 (2006)

    Article  Google Scholar 

  28. Abdolhosseini, M., Zhang, Y.M., Rabbath, C.A.: An efficient model predictive control scheme for an unmanned quadrotor helicopter. J. Intell. Robot. Syst. 70(1-4), 27–38 (2013)

    Article  Google Scholar 

  29. Shamma, J.S.: An Overview of LPV Systems. In: Control of Linear Parameter Varying Systems with Applications. Springer, US (2011)

  30. Hoffmann, C., Werner, H.: A survey of linear parameter-varying control applications validated by experiments or high-fidelity simulations. IEEE Trans. Control Syst. Technol. 23(2), 416–433 (2015)

    Article  Google Scholar 

  31. Wu, F., Dong, K.: Gain-scheduling control of LFT systems using parameter-dependent Lyapunov functions. Automatica 42(1), 39–50 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  32. Shamma, J.S.: Analysis and design of gain scheduled control systems. Doctoral dissertation Massachusetts Institute of Technology (1988)

  33. Wu, F.: A generalized LPV system analysis and control synthesis framework. Int. J. Control. 74(7), 745–759 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  34. Blanchini, F., Miani, S.: Set-theoretic methods in control Springer (2008)

  35. Blanchini, F., Casagrande, D., Miani, S., Viaro, U.: Stable LPV realization of parametric transfer functions and its application to gain-scheduling control design. IEEE Trans. Autom. Control. 55 (10), 2271–2281 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zhang, Y.M., Jiang, J.: Fault tolerant control system design with explicit consideration of performance degradation. IEEE Trans. Aerosp. Electron. Syst. 39(3), 838–848 (2003)

    Article  Google Scholar 

  37. Zhang, Y.M., Jiang, J.: Active fault-tolerant control system against partial actuator failures. IEE Control Theory and Appl. 149(1), 95–104 (2002)

    Article  Google Scholar 

  38. Rotondo, D., Nejjari, F., Puig, V.: Robust quasi-LPV model reference FTC of a quadrotor UAV subject to actuator faults. Int. J. Appl. Math. Comput. Sci. 25(1), 7–22 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  39. Amoozgar, M.H., Chamseddine, A., Zhang, Y.M.: Experimental test of a two-stage Kalman filter for actuator fault detection and diagnosis of an unmanned quadrotor helicopter. J. Intell. Robot. Syst. 70 (1-4), 107–117 (2013)

    Article  Google Scholar 

  40. Apkarian, P., Gahinet, P., Becker, G.: Self-scheduled \(h{\infty }\) control of linear parameter-varying systems: A design example. Automatica 31(9), 1251–1261 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  41. Stevens, B.L., Lewis, F.L.: Aircraft control and simulation John Wiley & Sons (2003)

  42. Heemels, W.H., Daafouz, J., Millerioux, G.: Observer-based control of discrete-time LPV systems with uncertain parameters. IEEE Trans. Autom. Control. 55(9), 2130–2135 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  43. Stilwell, D.J., Rugh, W.J.: Interpolation of observer state feedback controllers for gain scheduling. IEEE Trans. Autom. Control. 44(6), 1225–1229 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  44. Bhat, S.P., Bernstein, D.S.: Continuous finite-time stabilization of the translational and rotational double integrators. IEEE Trans. Autom. Control. 43(5), 678–682 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  45. Boyd, S.P., El Ghaoui, L., Feron, E., Balakrishnan, V.: Linear matrix inequalities in system and control theory Philadelphia: Society for Industrial and Applied Mathematics (1994)

  46. Yu, X., Jiang, J.: Hybrid fault-tolerant flight control system design against partial actuator failures. IEEE Trans. Control Syst. Technol. 20(4), 871–886 (2012)

    Article  Google Scholar 

  47. Apkarian, P., Adams, R.J.: Advanced gain-scheduling techniques for uncertain systems. IEEE Trans. Control Syst. Technol. 6(1), 21–32 (1998)

    Article  MATH  Google Scholar 

  48. Montes de Oca, S., Tornil-Sin, S., Puig, V., Theilliol, D.: Fault-tolerant control design using the linear parameter varying approach. Int. J. Robust Nonlinear Control 24(14), 1969–1988 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  49. Khalil, H.K., Grizzle, J.W.: Nonlinear Systems. Prentice Hall, New Jersey (1996)

    Google Scholar 

Download references

Acknowledgment

The work reported in this paper is partially supported by NSERC, NNSFC #61573282, and SPNSF #2015JZ020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youmin Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Yuan, C. & Zhang, Y. Active Fault-Tolerant Control of Unmanned Quadrotor Helicopter Using Linear Parameter Varying Technique. J Intell Robot Syst 88, 415–436 (2017). https://doi.org/10.1007/s10846-017-0535-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-017-0535-4

Keywords

Navigation