Abstract
In this paper, we present an autonomous visual navigation system that determines the location of the unmanned aerial vehicle (UAV) in GPS-denied environment by detecting semantic features (roads centrelines, intersections, outlines of forest and river) in aerial imagery and matching them to a pre-built dataset. This work is centred around testing the capability of a road centreline modelling and matching algorithm to localise accurately. Alongside, dynamic feature modelling and minimalistic description to optimise data association are proposed. We test three novel datasets with satellite imagery covering the same rural area with significant seasonal and lighting variation.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Scaramuzza, D., Fraundorfer, F.: Visual odometry [tutorial]. IEEE Robot. Autom. Mag. 18(4), 80–92 (2011)
Ke, Y., Sukthankar, R.: PCA-SIFT: a more distinctive representation for local image descriptors. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004, vol. 2, pp. II–II. IEEE (2004)
Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In: European Conference on Computer Vision. Graz, Austria May, pp 7–13 (2006)
Cesetti, A., Frontoni, E., Mancini, A., Ascani, A., Zingaretti, P., Longhi, S.: A visual global positioning system for unmanned aerial vehicles used in photogrammetric applications. J. Intell. Robot. Syst. 61 (1–4), 157–168 (2011)
Masselli, A., Hanten, R., Zell, A.: Localization of unmanned aerial vehicles using terrain classification from aerial images. In: Intelligent Autonomous Systems 13, pp. 831–842. Springer International Publishing (2016)
Wahed, M., El-tawel, G.S., El-karim, A.G.: Automatic image registration technique of remote sensing images. Int. J. Adv. Comput. Sci. Appl. 4(2),177–187 (2013)
Zhang, Y., Xiong, J., Hao, L.: Photogrammetric processing of low-altitude images acquired by unpiloted aerial vehicles. Photogramm. Rec. 26(134), 190–211 (2011)
Castillo-Carrion, S., Guerrero-Ginel, J.E.: SIFT optimization and automation for matching images from multiple temporal sources. Int. J. Appl. Earth Obs. Geoinf. 57, 113–122 (2017)
Sirmacek, B., Unsalan, C.: Urban-area and building detection using SIFT keypoints and graph theory. IEEE Trans. Geosci. Remote Sens. 47(4), 1156–1167 (2009)
Turner, D., Lucieer, A., Watson, C.: An automated technique for generating georectified mosaics from ultra-high resolution unmanned aerial vehicle (UAV) imagery, based on structure from motion (SfM) point clouds. Remote Sens. 4(5), 1392–1410 (2012)
Lingua, A., Marenchino, D., Nex, F.: Performance analysis of the SIFT operator for automatic feature extraction and matching in photogrammetric applications. Sensors 9(5), 3745–3766 (2009)
Irani, M., Anandan, P.: About direct methods. In: International Workshop on Vision Algorithms, pp. 267–277. Springer, Berlin Heidelberg (1999)
Bloesch, M., Omari, S., Hutter, M., Siegwart, R.: Robust visual inertial odometry using a direct EKF-based approach. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 298–304. IEEE (2015)
Forster, C., Pizzoli, M., Scaramuzza, D.: SVO: fast semi-direct monocular visual odometry. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 15–22. IEEE (2014)
Mouragnon, E., Lhuillier, M., Dhome, M., Dekeyser, F., Sayd, P.: Monocular vision based SLAM for mobile robots. In: 18th International Conference on Pattern Recognition, 2006. ICPR 2006, vol. 3, pp. 1027–1031. IEEE (2006)
Lemaire, T., Berger, C., Jung, I.K., Lacroix, S.: Vision-based slam: stereo and monocular approaches. Int. J. Comput. Vis. 74(3), 343 (2007)
Nister, D.: An efficient solution to the five-point relative pose problem. IEEE Trans. Pattern Anal. Mach. Intell. 26(6), 756–770 (2004)
Conte, G., Doherty, P.: An integrated UAV navigation system based on aerial image matching. In: Aerospace Conference, 2008 IEEE, pp. 1–10. IEEE (2008)
Liu, X., Wang, H., Fu, D., Yu, Q., Guo, P., Lei, Z., Shang, Y.: An area-based position and attitude estimation for unmanned aerial vehicle navigation. Sci. China Technol. Sci. 58(5), 916–926 (2015)
Schneider, J., Eling, C., Klingbeil, L., Kuhlmann, H., Förstner, W., Stachniss, C.: Fast and effective online pose estimation and mapping for UAVs. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 4784–4791. IEEE (2016)
Erhard, S., Wenzel, K.E., Zell, A.: Flyphone: visual self-localisation using a mobile phone as onboard image processor on a quadrocopter. J. Intell. Robot. Syst. 57(1), 451–465 (2010)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)
Wang, W., Yang, N., Zhang, Y., Wang, F., Cao, T., Eklund, P.: A review of road extraction from remote sensing images. Journal of Traffic and Transportation Engineering (English Edition) 3(3), 271–282 (2016)
Volkova, A., Gibbens, P.W.: A comparative study of road extraction techniques from aerial imagery-a navigational perspective. In: Asia-Pacific International Symposium on Aerospace Technology (APISAT 2015), p. 692. Engineers Australia (2015)
Mena, J.B.: State of the art on automatic road extraction for GIS update: a novel classification. Pattern Recogn. Lett. 24(16), 3037–3058 (2003)
Sirmacek, B., Unsalan, C.: Urban-area and building detection using SIFT keypoints and graph theory. IEEE Trans. Geosci. Remote Sens. 47(4), 1156–1167 (2009)
Hinz, S.: Automatic road extraction in urban scenes-and beyond. Int. Arch. Photogramm. Remote. Sens. 35 (PART B3), 349–355 (2004)
Ziems, M., Gerke, M., Heipke, C.: Automatic road extraction from remote sensing imagery incorporating prior information and colour segmentation. IntArchPhRS (36), PIA, 7, pp. 141–147 (2007)
Mnih, V., Hinton, G.: Learning to detect roads in high-resolution aerial images. Comput. Vis. - ECCV 2010, 210–223 (2010)
Costea, D., Leordeanu, M.: Aerial image geolocalization from recognition and matching of roads and intersections (2016)
Poullis, C., You, S.: Delineation and geometric modeling of road networks. ISPRS J. Photogramm. Remote. Sens. 65(2), 165–181 (2010)
LLi, Y., Briggs, R.: Automatic extraction of roads from high resolution aerial and satellite images with heavy noise. World Acad. Sci. Eng. Technol. 54, 416–422 (2009)
Volkova, A., Gibbens, P.W.: Satellite Imagery Assisted Road-based Visual Navigation System. ISPRS Annals of Photogrammetry. Remote. Sens. Spat. Inf. Sci. 3(1), 209–217 (2016)
Saito, S., Aoki, Y.: Building and road detection from large aerial imagery. In: SPIE/IS&T Electronic Imaging, pp. 94050K-94050K. International Society for Optics and Photonics (2015)
Ok, A.O.: Automated extraction of buildings and roads in a graph partitioning framework. ISPRS Annals of Photogrammetry. Remote. Sens. Spat. Inf. Sci. 1(3), 79–84 (2013)
Song, M., Civco, D.: Road extraction using SVM and image segmentation. Photogramm. Eng. Remote. Sens. 70(12), 1365–1371 (2004)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp. 1097–1105 (2012)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition (2014)
Steger, C., Glock, C., Eckstein, W., Mayer, H., Radig, B.: Model-based road extraction from images. In: Automatic Extraction of Man-Made Objects from Aerial and Space Images, pp. 275-284. Birkhäuser Basel (1995)
Gamba, P., Dell’Acqua, F., Lisini, G.: Improving urban road extraction in high-resolution images exploiting directional filtering, perceptual grouping, and simple topological concepts. IEEE Geosci. Remote Sens. Lett. 3(3), 387–391 (2006)
Montoya-Zegarra, J.A., Wegner, J.D., Ladicky, Ľ., Schindler, K.: Mind the gap: modeling local and global context in (road) networks. In: German Conference on Pattern Recognition, pp. 212-223. Springer International Publishing (2014)
Grote, A., Heipke, C., Rottensteiner, F.: Road network extraction in suburban areas. Photogramm. Rec. 27(137), 8–28 (2012)
Miao, Z., Shi, W., Zhang, H., Wang, X.: Road centerline extraction from high-resolution imagery based on shape features and multivariate adaptive regression splines. IEEE Geosci. Remote Sens. Lett. 10(3), 583–587 (2013)
Dumble, S.J., Gibbens, P.W.: Airborne vision-aided navigation using road intersection features. J. Intell. Robot. Syst. 78(2), 185 (2015)
Dumble, S.: Airborne Vision-Based Attitude Estimation and Localisation. Doctoral dissertation, University of Sydney) (2013)
Gonzalez, R.C., Woods, R.E., Eddins, S.L.: Digital image processing using MATLAB, Pearson-Prentice-Hall (2004)
Cheng, G., Zhu, F., Xiang, S., Wang, Y., Pan, C.: Accurate urban road centerline extraction from VHR imagery via multiscale segmentation and tensor voting. Neurocomputing 205, 407–420 (2016)
Wessel, B., Wiedemann, C., Hellwich, O., Arndt, W.C.: Evaluation of automatic road extraction results from SAR imagery. Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. 34(4), 786–791 (2002)
Williams, D.G.: Edge Feature and Optical Flow Terrain Aid for GNSS-Denied Airborne Visual Navigation. Doctoral dissertation, University of Sydney (2016)
Bindiganavle, K.: An Optimal Approach to Geometric Trimming of B-spline Surfaces. Doctoral dissertation, Virginia Tech (2000)
GEODATA TOPO 250K Series 3 Topographic Data, Geoscience Australia. Release Date: 26 June 2006. http://www.ga.gov.au/metadata-gateway/metadata/record/gcat_63999
Acknowledgements
The authors would like to thank David G. Williams and Dr. Steven J. Dumble for their advice and contributions to this work.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Volkova, A., Gibbens, P.W. More Robust Features for Adaptive Visual Navigation of UAVs in Mixed Environments. J Intell Robot Syst 90, 171–187 (2018). https://doi.org/10.1007/s10846-017-0650-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10846-017-0650-2