Skip to main content

Advertisement

Log in

Data-Inferred Personalized Human-Robot Models for Iterative Collaborative Output Tracking

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This article studies collaborative human- robot output tracking when the desired output is only known to the human but not to the robot controller. The main contribution of this article is to propose and establish convergence conditions for an iterative learning algorithm that updates the robot input using (i) the effect of the human action on the combined human-robot output tracking (which includes the effect of the human-response dynamics) and (ii) data-inferred human-robot models. This allows the iterative learning control (ILC) to be personalized for each individual human operator. Additionally, experimental results are presented to illustrate the iterative learning approach. Results show that, with the proposed approach, the robot can learn to collaboratively track the output with 10.0% error, which is close to twice the robot noise of 4.6% of the desired output. Furthermore, the data-inferred models provided evidence of the effect of the human operator’s dynamics on the co-tracking task.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Matthias, B., Kock, S., Jerregard, H., Källman, M., Lundberg, I: Safety of collaborative industrial robots: Certification possibilities for a collaborative assembly robot concept. In: 2011 IEEE International Symposium on Assembly and Manufacturing (ISAM), pages 1–6. IEEE (2011)

  2. Tapus, A., Mataric, M.J., Scasselati, B.: Socially assistive robotics [grand challenges of robotics]. IEEE Robot. Autom. Mag. 14(1), 35–42 (2007)

    Article  Google Scholar 

  3. Mast, M., Burmester, M., Krüger, K., Fatikow, S., Arbeiter, G., Graf, B., Kronreif, G., Pigini, L., Facal, D., Qiu, R.: User-centered design of a dynamic-autonomy remote interaction concept for manipulation-capable robots to assist elderly people in the home. J. Human-Robot Inter. 1(1), 96–118 (2012)

    Article  Google Scholar 

  4. Ezer, N., Fisk, A.D., Rogers, W.A.: More than a servant: Self-reported willingness of younger and older adults to having a robot perform interactive and critical tasks in the home. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, volume 53, pages 136–140. SAGE Publications Sage CA: Los Angeles, CA (2009)

  5. Martens, C., Prenzel, O., Gräser, A.: The rehabilitation robots FRIEND-I & II: Daily life independency through semi-autonomous task-execution. Citeseer (2007)

  6. Gulrez, T., Tognetti, A.: A Sensorized Garment Controlled Virtual Robotic Wheelchair. J. Intell. Robot. Syst. 74(3), 847–868 (2014)

    Article  Google Scholar 

  7. Eriksson, J., Mataric, M.J., Winstein, C.: Hands-off assistive robotics for post-stroke arm rehabilitation. In: Proceedings IEEE International Conference on Rehabilitation Robotics (ICORR’05), pp 21–24 (2005)

  8. Goodrich, M.A., Schultz, A.C.: Human-robot interaction: a survey. Foundations and trends in human-computer interaction 1(3), 203–275 (2007)

    Article  MATH  Google Scholar 

  9. Kober, J., Bagnell, A.J., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research, page 0278364913495721 (2013)

  10. McRuer, D.T., Krendel, E.S.: The human operator as a servo system element. J. Frankl. Inst. 267(6), 511–536 (1959)

    Article  MATH  Google Scholar 

  11. Ahn, H.-S., Chen, Y.Q., Moore, K.L.: Iterative learning control: brief survey and categorization. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 37(6), 1099 (2007)

    Article  Google Scholar 

  12. Arimoto, S., Kawamura, S., Miyazaki, F.: Bettering operation of robots by learning. J. Robot. Syst. 1 (2), 123–140 (1984)

    Article  Google Scholar 

  13. Berg, J.V.D., Miller, S., Duckworth, D., Hu, H., Wan, A., Fu, X.-Y., Goldberg, K., Abbeel, P.: Superhuman performance of surgical tasks by robots using iterative learning from human-guided demonstrations. In: 2010 IEEE International Conference on Robotics and Automation (ICRA), pages 2074–2081. IEEE (2010)

  14. Wang, J., Xu, X., Liu, D., Sun, Z., Chen, Q.: Self-learning cruise control using kernel-based least squares policy iteration. IEEE Trans. Control Syst. Technol. 22(3), 1078–1087 (2014)

    Article  Google Scholar 

  15. Warrier, R.B., Devasia, S.: Iterative learning from novice human demonstrations for output tracking. IEEE Trans. Human-Mach. Syst. 46(4), 510–521 (2016)

    Article  Google Scholar 

  16. Warrier, R.B., Devasia, S.: Inferring intent for novice human-in-the-loop iterative learning control. IEEE Transactions on Control Systems Technology (2016)

  17. Liu, W., Chen, D., Steil, J.: Analytical Inverse Kinematics Solver for Anthropomorphic 7-DOF Redundant Manipulators with Human-Like Configuration Constraints. J. Intell. Robot. Syst. 86(1), 63–79 (2017)

    Article  Google Scholar 

  18. Atkeson, C.G., McIntyre, J.: Robot trajectory learning through practice. In: IEEE International Conference on Robotics and Automation, pp 1737–1742 (1986)

  19. Norrlof, M.: An adaptive iterative learning control algorithm with experiments on an industrial robot. IEEE Trans. Robot. Autom. 18(2), 245–251 (2002)

    Article  Google Scholar 

  20. Gao, X., Mishra, S.: An iterative learning control algorithm for portability between trajectories. In: 2014 American Control Conference, Portland, OR, pages 3808–3813, June 4-6 June (2014)

  21. Ahn, H.-S., Chen, Y.Q., Moore, K.L.: Iterative learning control: brief survey and categorization. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 37(6), 1099–1121 (2007)

    Article  Google Scholar 

  22. Ghosh, J., Paden, B.: Iterative learning control for nonlinear nonminimum phase plants. ASME J. Dyn. Syst. Meas. Control. 123, 21–20 (2001)

    Article  Google Scholar 

  23. Tien, S., Zou, Q., Devasia, S.: Iterative control of dynamics-coupling-caused errors in piezoscanners during high-speed afm operation. IEEE Trans. Control Syst. Technol. 13(6), 921–931 (2005)

    Article  Google Scholar 

  24. Freeman, C.T., Lewin, P.L., Rogers, E., Owens, D.H., Hatonen, J.J.: Discrete fourier transform based iterative learning control design for linear plants with experimental verification . ASME J. Dyn. Syst. Meas. Control. 131(3), 031006–1–031006–10 (2009)

    Article  Google Scholar 

  25. Kim, K.-S., Zou, Q.: A modeling-free inversion-based iterative feedforward control for precision output tracking of linear time-invariant systems. IEEE/ASME Trans. Mechatron. 18(6), 1767–1777 (2013)

    Article  Google Scholar 

  26. Realmuto, J., Warrier, R.B., Devasia, S.: Iterative learning control for human-robot collaborative output tracking. In: 2016 12th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA), pages 1–6. IEEE (2016)

  27. Wiggin, B.M., Sawicki, G.S., Collins, S.H.: An exoskeleton using controlled energy storage and release to aid ankle propulsion. In: 2011 IEEE International Conference on Rehabilitation Robotics (ICORR), pages 1–5. IEEE (2011)

  28. Ragonesi, D., Agrawal, S.K., Sample, W., Rahman, T.: Quantifying anti-gravity torques for the design of a powered exoskeleton. IEEE Trans. Neural Syst. Rehabil. Eng. 21(2), 283–288 (2013)

    Article  Google Scholar 

  29. Lai, J.C.K., Schoen, M.P., Perez Gracia, A., Naidu, D.S., Leung, S.W.: Prosthetic devices: challenges and implications of robotic implants and biological interfaces. Proc. Inst. Mech. Eng. H J. Eng. Med. 221 (2), 173–183 (2007)

    Article  Google Scholar 

  30. Perez-Maldonado, C., Wexler, A.S., Joshi, S.S.: Two-dimensional cursor-to-target control from single muscle site semg signals. IEEE Trans. Neural Syst. Rehabil. Eng. 18(2), 203–209 (2010)

    Article  Google Scholar 

  31. Sanchez, J.C, Mahmoudi, B., DiGiovanna, J., Principe, J.C.: Exploiting co-adaptation for the design of symbiotic neuroprosthetic assistants. Neural Netw. 22(3), 305–315 (2009)

    Article  Google Scholar 

  32. Kirsch, N.A., Alibeji, N.A., Sharma, N.: Model predictive control-based dynamic control allocation in a hybrid neuroprosthesis. In: ASME 2014 Dynamic Systems and Control Conference, pages V003T43A003–V003T43A003. American Society of Mechanical Engineers (2014)

  33. Yu, B.: Interaction Dynamics in Oscillator and Human-in-the-loop Systems. The University of Michigan, PhD thesis (2014)

    Google Scholar 

  34. Butterworth, S.: On the theory of filter amplifiers. Wirel. Engineer. 7(6), 536–541 (1930)

    Google Scholar 

  35. Bradski, G., Learning, A.K.: OpenCV: Computer vision with the OpenCV library: Computer vision with the OpenCV library. O’Reilly Media, Inc (2008)

  36. Timoshenko, S.: Strength of materials. New York (1930)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Realmuto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Realmuto, J., Warrier, R.B. & Devasia, S. Data-Inferred Personalized Human-Robot Models for Iterative Collaborative Output Tracking. J Intell Robot Syst 91, 137–153 (2018). https://doi.org/10.1007/s10846-017-0653-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-017-0653-z

Keywords

Navigation